
Journal of Statistical Physics, Vol. 93, Nos. 1/2, 1998

The ferromagnetic Ising model on the Bethe lattice of degree k is considered in
the presence of a dichotomous external random field fx= +a and the tem-
perature T>0. We give a description of a part of the phase diagram of this
model in the T-a. plane, where we are able to construct limiting Gibbs states
and ground states. By comparison with the model with a constant external field
we show that for all realizations {={£x= ±a} of the external random field:
(i) the Gibbs state is unique for T> Tc ( k > 2 and any a) or for a> 3 (k = 2 and
any T); ( i i ) the +-phases coexist in the domain {T< T c , a . < H F ( T ) } , where Tc

is the critical temperature and HF(T) is the critical external field in the
ferromagnetic Ising model on the Bethe lattice with a constant external field.
Then we prove that for almost all £,: ( i i i) the +-phases coexist in a larger
domain { T< T c , a < H F ( T ) +e(T)}, where £(T)>0; and (iv) the Gibbs state is
unique for 3 > a > 2 at any T. We show that the residual entropy at T—0 is
positive for 3 > a > 2, and we give a constructive description of ground states,
by so-called dipole configurations.
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1. INTRODUCTION AND DEFINITIONS

It is known that the Ising model on the Bethe lattice rk of degree k > 2,
exhibits rather nontrivial behavior from the point of view of the structure
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of Gibbs states [BG, BRZa]. The problem gets obviously more com-
plicated when the system is embedded into an external random field. In this
paper we will be interested in the random field Ising model (RFIM) in the
dichotomous external random field taking values f,x = ±a, x e V(ck), where
V ( c k ) is the set of vertices of the Bethe lattice ck.

The case k = 1 corresponds to the one-dimensional RFIM. In this case
there is no phase transition for the inverse temperature B=T-1 <co (i.e.,
the Gibbs state uB,e is unique for all B < oo and all configurations £ =
{£x,xe V ( c k ) } ) . The structure of the ground states u00,e = limB-->00 uB,e is
described in our previous paper [BRZb]. The exact formula for the
residual entropy S0 0>0 is derived by Derrida et al. [DVP] (see also
[BPZ, V, PF, KM]). Some partial results for B< oo are obtained by
Bruinsma and Aeppli (see [AB, BA]). For the case k = 2 Bruinsma [Br]
proposes some clever theoretical arguments, to describe the structure of the
ground states for RFIM on the Bethe lattice, and to estimate the residual
entropy at B-> oo.

The aim of the present paper is to give a rigorous study of the phase
diagram of the RFIM on the Bethe lattice for the dichotomous random
external field. The rest of this section contains the main notations and
definitions. Section 2 is devoted to the formulation of our main results.
They are summarized in Fig. 1 and they can be formulated as follows:

• The Gibbs state is unique for all a and for all realizations
£, = {£x, xe V(ck)} of the external field, if T> Tc, where Tc is the critical
temperature of the model in the absence of external field. (This result is
valid for any degree k > 2 ) .

• If k = 2 and a>3, then the Gibbs state uB,e is unique for all T>0
and all £,. In this case the ground state ,u00,e = limB_00 uB,e exists, and it is
concentrated on the spin configuration that follows the sign of the external
field.

• If k = 2 and 2 < a < 3 , then the Gibbs state is unique for all T>0
and for almost all realizations £, of the external field. We show that in this
case the ground state exists, and it is concentrated on the set of dipole
ground state configurations described in detail in Section 4. In Section 5 we
derive an exact formula for the corresponding residual entropy. We show
that the residual entropy is constant for 2 < a < 3 and it has spikes at the
endpoints a = 2 and a = 3 (cf. [Br]).

• In the low temperature domain, T<TC, we show that for all
a < H F ( T ) , where H F ( T ) < 1 is the critical constant external field, and
for all £, there are at least two different extreme Gibbs states, which are
limiting Gibbs states u+

B,e obtained with ( +)- and (— )-boundary conditions.
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Fig. 1. Phase diagram of ferromagnetic RFIM on Bethe lattice for k = 2. In domain / one
has two extreme Gibbs states corresponding to ( ±) boundary conditions for all f, while in
domain // they are different for almost all configurations of the external field £,. The boundary
of domain / is the line of Giffiths singularities corresponding to a nonanalytic Cx transition.
Domain {a>3 or T > T } corresponds to uniqueness of the Gibbs state for all f. For
{2 < a < 3 and T< Tt} the Gibbs state is unique for almost all £ and the residual entropy Sres

is a positive constant for 2<a<3 with spikes at a = 2 and a = 3. We guess that in fact the
Gibbs state is unique for all £ in domain {a> H A F ( T ) , 0< T< T,} and unique for almost
all f, in domain IV, where H A F ( T ) is again a line of Giffiths singularities. We have no guess
for the rest of the domain ///. Numerical simulations strongly suggest uniqueness for
{1 < a < 2 , T<Tt}. Approximating formula for residual entropy (see Section 5) gives Sres>0
for {1 <a<2 , T = 0}.

For a < 1 the corresponding ground states u+
x,e = limB _>x u

+
B,e are concen-

trated on ( +)- and ( — )-spin configurations, respectively.

• We extend the above domain where the ( +)- and (— )-Gibbs state
are different, using an intermittency of the effective external field for small
values of E = a — HF(T) >0 (see Section 6). Namely, we show that there
exists s(T) such that in the domain {0<T<TC, HF(T) <a.<HF(T) +
e(T)}, the two limiting Gibbs states with ( + ) - and ( — )-boundary condi-
tions are different for almost all realizations £.

The line a = HF(T) is the line of the Griffiths singularities. We show
that on this line there is a discontinuous change of support of the probabil-
ity distribution of the effective external field. We conjecture that the discon-
tinuous change of support leads to a non-analyticity of the (internal) free
energy (of, say, the (+ )-state: on the Bethe lattice the free energy depends
on the Gibbs state) as a function of a at a. = HF(T). Since these averages
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Fig. 2. Asymmetric distribution of effective field in domain I: B = 1.0, a = 0.4.

Fig. 3. Asymmetric distribution of effective field in domain II: B= 1.0, a = 0.8.
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Fig. 4. Symmetric distribution of effective field in domain III. B = 1.0, a = 1.0.

are Cx-functions of a, the line a = H F ( T ) is the line of the Griffiths
singularities (cf. [Br]).

. We conjecture that in the domain {0< T< Tc, H
A F(T) - n ( T ) <

a < H A F ( T ) } the Gibbs state uB,e is unique for almost all £,. The line
H A F ( T ) corresponds to the critical constant external field for the
antiferromagnetic Ising model, see (2.1). We guess that HAF(T) is the line
of the Griffiths singularities and that the Gibbs state is unique for all £ in
domain {0 < T< T,., H A F ( T ) «a}.

Let us introduce the main definitions. The Hamiltonian of the
ferromagnetic random field Ising model is given by

Here ax are spin variables taking values +1, £x stands for the random
external field, and Jxy >0 are the coupling constants. We shall consider
uniform interactions Jxy = 1, and a dichotomous field, i.e., the £ x are real
independent random variables taking values ±a with probability 1/2.
These variables are defined for each site of a lattice and we shall be con-
cerned by the Bethe lattice ck of degree k > 2 , i.e., rk is a tree with exactly
k + 1 vertices coming out from each vertex x. We use V and L to denote
respectively the set of vertices and edges of ck. There is a distance d(x, y)
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on V which is the length of the unique path from x to y, assuming that the
length of an edge is 1. Let us fix a vertex x0 as the origin. We define

the sphere of radius n and

the ball of radius n with the center at x0. We let Ln = {<x, y) : x, ye Vn,
d(x, y) = 1} be the set of edges with endpoints in Vn, and for xe Wn,
n = 0, 1,..., denote by S(x) = {ye Wn +1 : d(x, y) = 1} the set of direct
sucessors of x. Given a realization £, = {£,x}xev of the external field, the
finite-volume Gibbs measures, on the C-algebras E(Vn} = {an = {ax= ±1,
xeVn}}, at inverse temperature B = T - 1 , and boundary condition a
(a configuration on V\Vn )are defined by

where Zn(a) is the partition function.
Below it will be useful to consider a more general setup of the problem

corresponding to real-valued boundary conditions. It is related to construc-
tion of (nonhomogeneous) Markov chains on the Bethe lattice ck. Let h =
{hx, xe V} be a set of real numbers. We define for each n, the probability
distributions

where Zn is the normalizing factor. These probability distributions are said
to be compatible if for all n > 1,

It is easily verified that the probability distributions (1.3) are compatible if
and only if for any x e V the following equation hold:
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where

Indeed, one has

for all yeWn. The second equality is satisfied for ax = 1 and ax = — 1. This
is done by taking fB(x) defined as above and

If the probability distributions u n ( a n \ h ) are compatible, then by
known theorems they are projections on Vn of an infinite-volume Gibbs
measure ( u ( a \ h ) , and in the opposite direction, any limiting (in particular,
any extreme) infinite-volume Gibbs measure u ( c \ h ) has finite-volume com-
patible projections of the form (1.3) (cf. [G]). We will call a Gibbs state,
any infinite-volume Gibbs measure u ( a ) on V.

By the Dobrushin-Lanford-Ruelle theorem, if u(c) is a Gibbs state
then for every n, the conditional distribution of cn = c|vn , under the condi-
tion that outside of Vn, a coincides with some fixed configuration a, is
given by (1.2). The conditional distributions (1.2) are called specifications
of u(c), see e.g. [G].

Let us recall that in the case of homogeneous Markov chains defined
by equations (1.3) when for all x, £X = H (constant field) and hx = h*, the
equations (1.5) read

Then there exists H F ( T ) < k — 1, given by the equation

where 0 = tanhB, such that the equation (1.8) has

(i) a unique solution for T> Tc= l/artanh(l/k) or for T< Tc and
| H | > H F ( T )

(ii) two distinct solutions if T< Tc and |H| = HF(T)
(Hi) three distinct solutions if T< Tc and |H| <HF(T)
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2. MAIN RESULTS

By uB,e, where 0<B<oo and E = {Ex= + a, xe V}, we denote a
Gibbs state corresponding to specifications (1.2). The existence of uB,e for
all B and configurations E, follows from the weak compactness of the space
of probability measures on E ( V ) , [G]. By ground state we understand the
limit, ,uoo,e = limB-->00 uB,e, if it exists, where uB,e is a Gibbs state.

Theorem 2.1. If T> Tc, then uB,e is unique for all £.

Theorem 2.2. Let k = 2. I f a>3 , then

(a) uB,e is unique for all 0 <B< oo and all £

(b) the limit (ground state) u00,e = limB_> 0 0 uB,e exists and it is con-
centrated on a configuration such that cx = sign £x for all x e V.

If 3 > a> 2, then uB,e is unique for all £, and all 0 < B < oo such that

Remark. Observe that for a = 2 the last condition reduces to
2tanhB< 1, which is equivalent to B<Bc. The domain of "the uniqueness
for all £" in Theorems 2.1 and 2.2 can be probably extended as follows.
Consider the critical constant external field of the antiferromagnetic Ising
model on the Bethe lattice:

where 0 = tanh B (see Fig. 1). We conjecture that if T< Tc and a> HAF(T),
then the Gibbs state uB,e is unique for all £ (see a discussion in the proof
of Theorem 2.2 below). It is also plausible that there exists a continuous
function n ( T ) > 0 on 0<T<TC such that if T<TC and HAF(T)>a.>
H A F ( T ) - n ( T ) , then the Gibbs state uB,e is unique for almost all £,. The
critical line a. = HAF(T) is probably the line of the Griffiths singularities
(cf. [Br]), like the ferromagnetic critical line a. = H F ( T ) . In other words,
we expect that some of thermodynamic averages are C°° non-analytic func-
tions of a at a = HAF(T).

Theorem 2.3. Assume that 0<T<TC and a < H F ( T ) , see (1.9).
Then for any k> 2 and all realizations £ of the external field,

(a) there exist two different extreme Gibbs states uB,e
+ and u-

B,e which
are limiting Gibbs states with + and — boundary conditions;
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(b) if a< 1 then the limits (ground states) u+
00,e=limB__00u

+
B,e. exist

and they are concentrated on configurations {ax = 1 , x e V } and
{ax = — 1, x e V], respectively.

Theorem 2.4. Let k = 2 and assume that 2 < a . < 3 . Then

(a) for all B<oo and for almost all realizations £ of the external
field, there exists a unique Gibbs state uB,e

(b) for almost all £, there exists a ground state uoo.elimB-->uB,e

and it is a probability measure concentrated on the set of dipole ground
state configurations which are described in Section 4 below.

The residual entropy S00 of the ground state u00,e is calculated in
Section 5.

Theorem 2.5. Let k = 2. Then there exists a positive continuous
function e(T) on 0 < T< Tc (e(0) =e(Tc) = 0) such that if 0 < T< Tc and
H F ( T ) < a < H F ( T ) + e(T), then for almost all E,uB,e

+=u-
B,e.

Theorem 2.5 is derived from the following

Theorem 2.6. Under the assumptions of Theorem 2.5, let 0 <
T<TC and H F ( T ) < a < H F ( T ) + e ( T ) . Then under the assumptions of
Theorem 2.5 one has:

Before passing to proofs we would like to make few remarks about our
results. Theorems 2.1, 2.2, and 2.3 are valid for all realizations £, of the ran-
dom external field and these theorems are relatively easy. To prove them
we use some contraction estimates and F.K.G. correlation inequalities to
show that the ferromagnetic Ising model on the Bethe lattice with a
dichotomous random external field is majorized, in an appropriate sense, by
the model with a constant external field of the same strength.

On the contrary, Theorems 2.4 and 2.5 are valid only for almost all
realizations of £ and their proof is much more difficult. It is worth to notice
that in these theorems the condition "for almost all realizations £'' cannot
be replaced by the one "for all realizations £." For instance, in Theorem 2.4
one can take 2 < a < H A F ( T ) and a chess-board realization £ (a realization
with alternating pluses and minuses). Then the Gibbs state uB,e is not
unique for this £, although by Theorem 2.4 it is unique for almost all £.
Similarly, in Theorem 2.5, uB,e

+=u-
B,e if one takes £x = a.> HF(T), a con-

stant realization, while uB,e
+=uB,e

- for almost all £.



An interesting feature of the Ising model with the dichotomous ran-
dom external field is that the residual entropy S00 at T — 0 is positive for
2 < a < 3. We conjecture that it is positive in the interval 1 <a<2 as well
but we cannot prove it. Convincing heuristic arguments in favor of this
conjecture are given by Bruinsma [Br], We calculate S00 in Sections
below, and it turns out that S00(a) = const in the interval 2<a.<3 while at
a. = 2 and a = 3 the residual entropy has two spikes. This behavior of the
residual entropy is easily explained by the structure of the Gibbs measures
in the limit T->0. Namely, for all 2<a<3 the limiting Gibbs measure
u00,e =lim B-->uB,e is independent of a, while for a = 2 and a = 3 it is
concentrated on much bigger sets of configurations than for 2 < a < 3 (see
Section 4). Bruinsma [Br] derives a good approximate formula for S00(a)
and he shows that this approximate formula predicts that S 0 0 ( a ) is con-
stant in every interval 1 + (2/n + 1) < a < 1 + 2/n, n = 1, 2,..., with spikes at
a = l + 2 / n .

The central point in the proof of Theorem 2.5 in Section 6 is to show
that the limiting probability distribution v(dhx) of the effective external
field hx is not symmetric under plus boundary conditions. To prove the
asymmetry of v(dhx) we use the intermittency of the iterations of hx for a
small difference a — H F ( T ) >0, and we show that the main mass of v(dhx)
is concentrated on the positive half-axis, which gives Theorem 2.6. Then we
derive Theorem 2.5 from Theorem 2.6 using some soft ergodic arguments.

3. PROOF OF THEOREMS 2.1-2.3 AND 2.4a

We introduce the variables gx — fB(£,x + hx). Then the recursive equa-
tion (1.5) reads

This implies that gx satisfies

By (1.3) and (3.1), the probability distribution u(an | g ) , cn = c|vn, can be
written as

42 Blaher et al.
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We freely call g = {gx} the effective external field, along with h = {hx}. We
recall that by F.K.G. inequalities [FKG] one has the following proposi-
tion (see [LM]).

Proposition 3.1. The Gibbs states u+
B,e and u-

B,e exist and they are
extreme for all £,. Ifu+

B,e =u-
B,e, for a given £, then the Gibbs state is unique

for this £,.

We denote by g± = { g +
x , xe V} the configurations that correspond to

the Gibbs states u+
B,e.

We use below some properties of the function (1.6). They are sum-
marized in the next

Proposition 3.2.

Proof. All the relations (3.4)-(3.7) result from the following two
equations:

Now we turn to the proof of Theorems 2.1-2.3 and 2.4a.

Proof of Theorems 2.1 and 2.2. Consider the set of recursive equa-
tions (3.2). We have
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for some c e [Ex + Z y e s ( x ) gy
- , £x + E y e s ( x ) gy

+ ] so that

When T> Tc, one has tanh B < 1/k, so that by (3.4), f ' B ( c ) < 1/k. By apply-
ing recursively the inequality (3.9), we get that g+

x = g-
x. Hence u+

B,e=u+
B,ê .

In virtue of Proposition 3.1 this proves Theorem 2.1.

To prove Theorem 2.2, we first remark that by Proposition 3.2,
| f B ( t ) | < 1 . This implies that | g y | < 1 — d for some S = S(a, B, k) >0 and
all y. Hence, when a>2 and k = 2, we have that |c| >a -2+ 2S in (3.9).
By (3.8),

hence for some S0 > 0,

provided a > 3 o r 3 > a > 2 and

In the both cases, iterating (3.9) we conclude that g+
x =gx

- . Hence, the
uniqueness part of Theorem 2.2 follows from Proposition 3.1.

It is interesting to notice that the worst estimate on f ' ( c ) occurs when
the quantity | £ x + g y + g z | is minimal. For a .>2 this happens when the
sign of £x is opposite to the sign of Ey and £z, or if we extend this property
to the whole lattice, when E is a chessboard configuration. The chessboard
£ is equivalent (by a gauge transformation) to the antiferromagnetic model
with constant magnetic field, and this motivates our conjecture that the
uniqueness for all £, holds for a> H A F ( T ) .

For the Statement (b) of Theorem 2.2, we observe that for n = 1 one
gets by (3.3) that

When |£,x | > 3 then |Ex + £y: d(x, y) = 1 g y | > 0 and sign(£x + Ey •. d(x, y) =1 gy)
= sign £x. Thus we finish the proof by taking the limit B -> oo. |
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Proof of Theorem 2.3. Let <.>+
Be denote the expectation with

respect to the measure u+
B,e. Then by the conditions of Theorem 2.3 and by

the F.K.G. inequality one gets (cf. the one-point measure above) that

and

This proves that u+
B,e=u-

B,e. Their extremality follows from Proposi-
tion 3.1. Since for a<l l i m B > 0 0 < c x > +

B { + a } = +1, we obtain that for all
realizations £, ax = 1 a.e. with respect to u+

B,e and cx = — 1 a.e. with respect
to u-

B,e. |

Proof of Statement (a) Theorem 2.4. For any x, we denote by y
and z, its two direct successors. The recursive equation (3.2) reads

For a given £, let g+
x and gx

- be the gx corresponding respectively to the
states u+

B,e and u-
B,e. We shall estimate recursively the expectation

Ef |g
+

x-g-
x|. We have

where ce[£x + gy
 - +g z

- ,£x + gy
++gz

 + ]. Let us estimate fB(c). Assume
that Ex = a>0. Consider different cases for Ey and £z.,.

Case (i) £y = Ez= —a. Then we use the estimate

which is valid for all c (see (3.4))

Case (ii) £y + £z = 0. Let for instance £y = a and £z= —a. Then

hence
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In this case

(see (3.5)).
Case (in) £y = £z = a. Then £x + g± + g± >2, hence c>2 and

(see (3.6)).

Notice that the probabilities of the cases (i), (ii) and (iii) are, respec-
tively, 1/4, 1/2, and 1/4. Thus by (3.11)-(3.14) one gets for xe Wn that

where

This gives that

Since (3 + tanh B)/4 < 1 and En<2 for all n, this implies by iterations that
En = 0 for all n. Hence for all x, g+

x = gx
- , for almost all configurations £,

which implies uniqueness by Proposition 3.1. |

4. DIPOLE GROUND STATES

Assume that k = 2 and £,x = + a with 2 < a < 3. We discuss the ground
state, u0 0 , e(c) = lim ; B_> 0 0uB_>(c). Let xe V. Then the one-site projection of
the Gibbs measure (cf. Section 3) can be presented as

where y, z, t are the nearest neighbors of x. In this section we do not fix the
origin x0 in V, and it is more convenient for us to consider the effective
field as a function on oriented edges, g = {gxy}, rather than a function on
vertices g={gx}. In this context, what was before gx, x=x 0 is now
denoted by gxy where the edge <x, y> goes from x in the direction of the
origin x0. The numbers gxy satisfy the recursive equation
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At B=oo

where f00 = limB_00 fB is the piecewise linear function:

For 2 < a < 3 and almost all £,, the equation (4.3) has a unique solution

ge = { g x y ( e ) } with

where

(see Lemma 4.2 below). Consider the partition of V in three subsets,
V= V+ u V_ u V° with

where g={gxy} is the unique solution of (4.3), g = g(£). The sets V±,
V° depend on £. We show below that for almost all £, the equation (4.2)
has a unique solution g = g(£, B) and the limit limB_>00 g(£, B) = g(£, oo),
exists. Then g(e, oo) is the unique solution to (4.3). From (4.1) it is clear
that

In other words, at B = oo, cx = 1 on V+ and cx = — 1 on V_.
Let us describe ax on V°. Let x e V°. Assume, for the sake of definite-

ness, that £x = 2 + e. Then

and all g's are from the set { ± 1, +e). Hence two of them, say gyx and gzx,
are — 1 and gtx = —e (see Fig. 5).
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Fig. 5. Ground state of dipole {x, t} configuration with x,teV0. The signs (+, —)
correspond to distribution of the external field (charges). "Charge" £x = 2 + c polarizes the
neighbours to take opposite signs. The same for the charge £,= — (2 + c). The dashed line
corresponds to the "current" 0<g v , = — g . v = e< 1, while solid lines correspond to
"currents" = ± 1. Positive currents are directed from positive to negative charges.

Then by (4.3),

which implies that

By (4.3),

Thus,

so that t e V°.
This proves that if x e V0 and £ x = 2 + e then there is a neighboring

vertex / such that t V°, £t,,= — 2 —e, and gtx= —gxt = e. This motivates
the following

Definition 4.1. Two neighboring vertices x,t are called a dipole if
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We call £x a charge at x and gxt a current from x to t. We call any connected
component of the set V° a dipole polymer, where we assume that two vertices
x, te V° are connected if d(x, t) = 1.

Observe that in any dipole {x, t}, the charges £x and £t, have opposite
signs and the currents are

In addition,

so that the charges in the dipole attract from the outside the charges of the
opposite sign (see Fig. 6). Indeed, consider, for instance, £u. From (4.8) and
(4.3), 1=gut, =Eu + gpu + gqu, where p and q are nearest neighbors of «,
which implies that Eu cannot be — 2 — e, hence £,u = 2 + e. This proves
(4.12).

Every dipole polymer consists of dipoles, as shown in Fig. 6. In Fig. 6
the dipole bonds are shown by dash lines, and the bonds connecting
dipoles between themselves and with the environment are shown by solid
lines. Observe that gxy = —gyx = ±e on dash lines and gxy = —gyx = +1 on
solid lines. The sign of gxy is determined by the rule that positive current
goes from + to —.

In any dipole polymer the charges are alternating. This implies that for
almost all £, there is no infinite polymer. On the other hand, there is a

Fig. 6. Configuration of "dipole polymer" corresponding to a ground-state configuration of
charges {£x= + ( 2 — e)} and "currents": {gxy= ±e} (dashed lines) and {guv.= ±1} (solid
lines).
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positive probability of appearing a given polymer at a given place in V.
Hence V° consists of an infinite number of finite dipole polymers,
V° = Uk=1

00 Vk, and the dipole polymers Vk have a positive density on V.
Consider a polymer Vk. Assume that xeVk and y e V k with

d(x, y ) = 1 . Then

Indeed, let for the sake of definiteness f,y = 2 + e. Then

which shows that gpy + gqy> — (1 +e). Hence

so that y cannot be from V'_. Since y e V°, this implies that y e V+. (4.13)
is proved. Thus on the boundary of a polymer Vk the charge of any bound-
ary point y determines the component V± to which y belongs.

Let { x , t } be a dipole. Let us determine the possible values cx ,c t , of
a ground state. Assume first that 2 < a < 3. We have that

Since x, t e V°,

and

Assume, for the sake of definiteness, that gx = 2 + e, £ , = — 2 —e. Then
g tx= -£ ,g x t = e and

Since 0 < e < l , the ground states (B-»oo) correspond to cxct,= 1, i.e.,
cx = ct, = 1, cx = ct, = — 1. In other words, on any dipole we have either the
(+ )-state or the (— )-state.

Let x, t E Vk be nearest neighbors belonging to two different dipoles.
Assume that £x = 2 + e, £,= —2 —e. Then g t x = 1 , gxt =1 and (4.14)
reduces to
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and the ground states are

In other words, between two dipoles we can change the sign of cx

from sign £x to sign £t.

Definition 4.2. Assume that 2 < a < 3 . Let Vk=Vk(£,} a dipole
polymer. A configuration c= { c x , xe Vk} on Vk is called a dipole ground
state configuration if

(i) cxc t= 1 for every dipole {x, t} in Vk,

(ii) either cxct, = 1 or {cx = sign Ex, ct , = sign £,} for every pair {x, t}
connecting two dipoles in Vk.

We denote by Mk = M k (£ ) the set of dipole ground state configura-
tions on Vk(£).

Definition 4.2 describes a dipole ground state configuration for the
case when 2 < a < 3. For the cases a = 3 and a = 2 it should be modified as
follows. Observe that for e = 1 (a = 3) formula (4.15) coincides with (4.16),
hence the ground states on a dipole are (4.17). This leads to the following

Definition 4.2, for a = 3. Let Vk= Vk(£,} be a dipole polymer. A
configuration a = {ax, xe Vk} on Vk is called a dipole ground state
configuration if for every neighboring x,teVk either cxct,=1 or
{cx = sign Ex,ct, = sign £t,}.

Notice that the difference between a ground state configuration for
2 < a < 3 and for a = 3 is that for 2 < a < 3, cxct = 1 on any dipole while for
a = 3 either cxct= 1 or {cx = sign £x, ct, = sign ct}. Therefore the number
of ground state configurations for a = 3 is bigger than the number of those
for 2 < a < 3. This is reflected in the behavior of the residual entropy, which
is higher at a = 3 (at the spike) than at 2 < a < 3 (on the plateau). We
evaluate the residual entropy in the next section.

When a = 2 we have to change the definition of dipole.
Namely, in the case a = 2, if x e V° and, and, say, £x = 2, gyx = — 1,

gzx = — 1, gtx = 0, then t e V° but £t, can be both 2 and —2. Thus we arrive
at the following

Definition 4.1, for a = 2. Two neighboring vertices x,t are a
dipole if
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Thus, we do not have the restriction gx + £t = 0 as in (4.10). Strictly
speaking, ( £ x , £t,,} is not a dipole anymore, since it is not necessarily
neutral. We will call (x, t) a dipole to facilitate a unique formulation of a
ground state both for 2 <a < 3 and for a = 2. The definition of a dipole
ground state configuration for a = 2 remains the same as in Definition 4.2.
Observe that for a = 2 we have more dipoles and, consequently, more
dipole polymers than for 2 < a < 3 . This produces a jump of the residual
entropy for a = 2 (see Section 5).

Theorem 4.1. Let k = 2 and 2 < a < 3. Then for almost all £ there
exist a limit, u00,e(c) = limB_>00 uB,e(c) and

where u+
00(cv+ ) is a degenerate measure concentrated on {cx= +1} or

{cx = — 1}, respectively, and u 0 0
k

e ( c v k ) is a uniform measure on the set Mk

of dipole ground state configurations, so that u0 0
k(cv k)=1/|M k |for all

dipole ground state configurations cvk .

Proof of Theorem 4.1. Let A c V be a finite subset. Then

Lemma 4.1. For every N> 1 and almost all e, as B-> oo,

where gxy(oo, £) e { + 1, ±e} e = a — 2, anc

We prove Lemma 4.1 in several steps. First we prove some auxiliary
results.

Lemma 4.2. If a>2, then for almost all £ the equation

has a unique solution g= {gxy}.
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Proof. We have the following properties

(1) I f £ x = a, then gxt>0;

(2) If Ex = a and max{g y x , g z x } > 0 then gxt= l;

(3) If £x = a and max{Ey, £z} =a then gxt= 1;

The properties (1) and (2) are obvious from (4.21) and (3) follows
from (1) and (2).

Denote by Vxt a half-tree with the root at x, which grows in the direc-
tion opposite to t. For a given configuration £= {£,x,xeV} consider the
sets

For a given £, we say that there is no percolation by Vxt\A(£) if every path
from x to oo contains a point from A(£).

Lemma 4.3. For almost all £ there is no percolation by Vxt\A(£).

Proof. Let pn
+ be the probability of £'s for which there is percolation

from x to Wn under the condition that £x= ± a, respectively. Then if we
consider different possibilities for the field £.„ at ve W0 = {x} and veW1,
we obtain the recursive equations

By symmetry p+
n = pn

- , hence

which shows that limn_00 p
+

n =0, so that with probability 1 there is no
percolation from x to oo. Lemma 4.3 is proved. |

End of the Proof of Lemma 4.2. For a given £ = {£x, xe V}, define
the set of points blocking the percolation, as
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where P ( x , v ) is the path connecting x with v. By the property (3) above,
g v w (E)=±1 if

Hence the value gvw(£,} is uniquely determined for veB(E) . In addition, if
the blocking set B(£) separates x from oo, the value gxt(£) is uniquely
determined by the values of gvw(£) on V E B ( e ) (by virtue of the recursive
equation (4.21)). Since B(£) does separate x from oo for almost all f,
Lemma 4.2 is proved.

Assume that a = 2 + e>2. Then the properties (l)-(3) can be
strengthened as follows. Let B = oo. Then

(1) If Ex = a,then gxt>£
(2) If £x = a and max{gyx, g z x}>e then (£,x + gyx + g z x ) > 1 + 2e

(3) If ex = a and max{Ey,Ez,} =a then (£x + gyx + g z x ) > 1 + 2 e

This allows us to prove that if veA±(£) then as B-» oo,

The proof is based on the asymptotic behavior of the function f B ( t ) as
B->oo.

Lemma 4.4. As B->oo

and

We refer the reader to [BRZb] for the proof of Lemma 4.4. Lemma 4.4
shows that for t > 1 + e the function f B ( t ) is close to 1. We will call the
region t>1 +e, the plateau.

Proof of Lemma 4.1, The property (3) above implies that if Ev = a
and max{£y, £z} =a where S(v) = {y, z}, then for sufficiently large B the
value (£,v + gyv + g z v) is on the plateau, and, by virtue of Lemma 4.4, (4.25)
holds. This proves (4.19) for v e A ( £ ) . Since the blocking set B(£)c=A(£),
formula (4.25) holds for veB(£). For almost all £ the set B(£) separates x
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from oo. Now, we can prove (4.19) for all v below B ( e ) by induction
moving down from B(£) to x. So we assume that

where gyv, g,zv { ± 1, ±e} and cyv, czveM. Then

Consider three cases

Then in case (1), Lemma 4.4 and (4.28) imply that

In case (2) we obtain that

This gives the asymptotics (4.19) with

(Observe that the set M in (4.20) is closed with respect to summation). In
case (3) we similarly obtain that

with

In this case again c u t , (£ )eM, provided that cyv(£,), czv(£,}eM. This induc-
tion proves Lemma 4.2 for a = 2 + £ > 2.

In the case a = 2 we have to use the following property (4) which
follows from the ones (l)-(3).
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Property (4): If Ex = a and either

or

or

then £x + gyx + g z x >2. Indeed, in the case (a), gxy, g z x>0 hence £x +
gyx + gzx>2. In the case (b), gyx>1 by property (3) above, hence
£x+gyx + gzx > 2 + 1 — 1>2 ; the same arguments works for the case (c).

For a given E, we define the sets A°±(£) of vertices v e Vxt for which the
assumptions of Property (4) hold with respect to the configuration +E,
respectively. Let A0(E) = A°+(£) u A0_(£)-

We use the following lemma, which replaces Lemma 4.3.

Lemma 4.5. For almost all £ there is no percolation by Vxt\A°(£).

Proof. Let p+
n be probabilities of percolation from the root x to Wn

under the condition that £,x= ±2. Then p+
n = pn

- =pn. Considering the
different possibilities for £y Ez,Eu, and £v, we obtain that

This is majorized by a sequence {bn} satisfying

Two fundamental solutions for the last equation are bn =Ln
1,2 where L1,2

are to be found from the quadratic equation

This gives

Since |L1,2 |<1, this implies that lim,n-->00 bn = 0, hence limn_>00 pn = 0.
Lemma 4.5 is proved. |

The rest of the proof of Lemma 4.1 for a = 2 is similar to the proof for
a = 2 + e > 2 and we omit it.
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Completion of the Proof of Theorem 4.1. Let us substitute the
equation (4.19) into the formula for uB , £ ( c A ) :

where A c V, is a finite connected set,

and

Denote by M e (A) — {a(j)A} the set of ground state configurations of the
Hamiltonian H 0 (c A ) , i.e.,

Then the equation (4.30) implies that the limit,

exists and is concentrated on the ground state configurations. In addition,
by (4.30)

In the case when A = { x } , (4.31) reduces to

hence if xe V ± ( £ ) , i.e.

then
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Let now Vk(t;) be a dipole polymer and let

be the boundary of Vk(£,). Then Bk(£,)<=.V+vV_. Therefore, for all
ground states a ( j )A on the set A = Vk(£)vBk(£) one gets cx= ±1 for
x e B k ( e ) . By (4.33)

This expression does not depend on { c x , XE V k ( £ , ) } , hence u00,e is a
uniform measure, i.e.,

where | M k ( £ ) | is the number of ground states configurations of the
Hamiltonian

where c y = ± 1 for ye V±, respectively. Let us show that the set Mk(£) of
ground states configurations coincides with the set of dipole configurations.

Since the Gibbs measure uB,e has the Markov property, the measure
u00,£ has it as well. This implies that

where Lk is the set of directed edges, which starts at some point y0e V k ( e )
and which has the property that for every xe Vk(£,), there exists a unique
path by Lk from y0 to x. Notice that

hence we deduce from (4.34) that u00,e(cvk(e))=0 for all dipole configura-
tions and only for dipole configurations. Hence the set M k(e) of ground
state configurations coincides with the set of dipole ground state configura-
tions and Theorem 4.1 is proven.
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5. RESIDUAL ENTROPY

In this section we will assume that k = 2 and 2 < a< 3. By Theorem 2.4
(a) this ensures that the Gibbs state uB,e is unique for all B< 00 and almost
all £,. We will derive some general formula for the entropy SB of uB,e. By
SB we understand the entropy on the "interior" spins (see, e.g., a discussion
in [Ba]), and as well-known, on the Bethe lattice the entropy depends on
the boundary conditions. We shall show that the entropy SB is a "self-
averaging" quantity, i.e., it is independent of £ for almost all £,. Then we
shall calculate the residual entropy S00 = limB-->00 SB, and show that S00 > 0.

Consider the stochastic recursive equation

It is understood as follows. Let {gy, yeS(x)} be independent random
variables with some distribution v(dg), the same for all gy's. Then we
denote by Q B ( v ) ( d g ) the distribution of f B ( £ x + E y e s ( x ) g y ) > i.e., Q B ( v ) ( d g )
is the distribution of gx in (5.1). A measure v(dg) is called invariant with
respect to QB if

Let u+
B,e be the Gibbs states with (+ )-boundary conditions, respectively,

and let g ± ( B , £) = { g +
x ( B , e), xe V} be corresponding effective fields. Let

v +
B ( d g ) be a probability distribution of g+

x(B,£). Observe that v +
B ( d g ) is

independent of x.
From the definition of u+

B it follows that

where v + = d( g ± 1) dg. This implies that

i.e., v+
B are invariant measures. In addition,

In the case when u+
B,e =u-

B,e for almost all E, v+
B = v-

B and it is symmetric.

Proposition 5.1. Assume that for a given B<oo, nB,e
+=uB,e

-. for
almost all £. Let v=v+= v-. Then for all probability measures v 0 ( d g ) on R,
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Proof. Consider a half-tree V0 with a root at x. From F.K.G.,

where u+
n, u n ( c ) are finite Gibbs distributions on V° with boundary condi-

tions + and c, respectively. Since

this implies that

Since gx = fB(£,x + hx) this, in turn, implies that

Consider random boundary conditions c= { c x , xe W n + 1} where ax are
independent random variables with the distribution v0. Then averaging
with respect to a we obtain that

These inequalities hold for all £. Since u+
B,e =u-

B,e a.e. <E, then taking in (5.8)
n -» oo, we obtain that

and hence the distribution of gx(v0) = limn-->00 gxn(v0) coincides with v.
Since the distribution of gxn(v0) is nothing else than Q"(v0), we obtain that
v = limn-->00 Qn(v0). Proposition 5.1 is proved. |

Now we turn to calculation of the entropy SB Consider the partition
function of the ( ± )-state u +

B , e ( c n ) ,

The free energy (density) is defined as

Observe that |Wn| = 3 ( 2 n - 1 ) and |Vn| =3(2n)-2.
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Theorem 5.1. The free energy exists for all £,, it is independent
of d;, and it is the same for ( + )-state and (- )-state. The free energy is
given by the formula

where v +
B ( d g ) is the invariant measure of the stochastic equation (5.1) and

Proof. For the sake of definiteness, let us consider ( + )-state. From
formula (1.7), we obtain the recursive equation

This gives that

Observe that |dB(Ex + h+
x(E))|<CB for all £,x, hx

+(£), hence

Therefore,

Since the random variables Ex + hx
+(e), xe Wn, are independent, and the

distribution of Ex + hx
+(E) is the same for all xe V, we obtain, by the law

of large numbers, that for a fixed k, for almost all d;,

where v+(dh) is the distribution of h. This implies that for almost all d;,
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Since h +
x = Z y e S ( X ) g y

+ , formula (5.11) follows from (5.14). In addition,
(5.4) implies that F - ( B ) = F + (B) . Theorem 5.1 is proved. |

In the case when the Gibbs state is unique, formula (5.11) reduces to

where vB = v+
B = vB

- .

Differentiability of the Free Energy. The free energy is a function of
B and a. The contraction argument that we used to prove the uniqueness
of the Gibbs state (see Theorems 2.1, 2.2, and 2.4) allows us to prove also
that the free energy is infinitely differentiable in B and a in the indicated
regions of uniqueness in the B — a plane. Indeed, let us consider for the sake
of defmiteness the differentiability in B.

Differentiation of recursive equation (3.2) in B gives a recursive equa-
tion on d B g x :

where f ' B ( t ) = df B ( t ) /d t . This equation implies that if we have two solutions
of (3.2), g1

x and g2
x, then

where

Assume that we know (as in Theorems 2.1, 2.2) that 0 < k f ' B ( c ) <q<1. Let
g1

x
 = gxm(£) and g2

x= g X n ( £ ) be solutions of recursive equation (3.2) in
the volumes Vm and Vn, respectively, with, say, ( + )-boundary conditions.
Then

1. there exist some constants C0, c0> 0 such that |g1
x — g2

x| < C0e-C
0

1

where l = min{m, n} (see the proof of Theorems 2.1 and 2.2 above);

2. (5.16) implies that sup,, |dBgxn| < co;
3. (5.17) implies that there exist some constants C1, c1 >0 such that

|dBg1
x-dBg2

x|<C1e-c1
l ,l = min{m,n} .
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Hence the Cauchy criterion holds for d B g x n (£ , ) which proves that
gx(£) = lim.n-->00 gxn(£,) is differentiable in B for all £. Similarly, if we write
£x as £,x = anx where nx = ± 1 then we can prove that gx is differentiable in
a for all n = {n x , xe V}. Higher order differentiation of (3.2) in B and a
allows us to prove in the same way that gx is an infinitely differentiable
function with respect to ft and a for all n.

If, like in Theorem 2.4a, we have a contraction only for the mathe-
matical expectations of gx with respect to f, (or with respect to n where
£ = an), then the above argument allows us to prove the differentiability in
ft and a of the mathematical expectation E n A ( g x , x e A ) , where A is an
arbitrary finite subset of V and A(gx, xe A) is an arbitrary smooth func-
tion. Observe that the free energy in (5.11) is a mathematical expectation
of this type, hence it is infinitely differentiable in B and a in the regions
indicated in Theorems 2.1, 2.2, and 2.4.

Evaluation of the Residual Entropy. The entropy SB can be
obtained from (5.11) as

The residual entropy at T = 0 is then

where F(co) = limB-->00 F(B) , By Lemma4.1, limB_00 g x ( B , £ ) = g x ( 0 0 , £ )
takes values in { + 1, ±s}. Thus the distribution v00 = limB_00 v B ( d g ) has
the form

The weights p, q satisfy p + q = 1/2 and they are determined from the fixed
point stochastic equation

Assume that 0<e< 1. Then (5.20) reduces to the equations
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This gives

To derive the residual entropy S00 from (5.18) we need the linear term in
the asymptotics of V B ( d g ) as B-1 -> 0. By Lemma 4.1, VJV> 1,

where gx(co, £,} takes values in the set { + 1, ±0} and cx(£) takes values in
the set

Let x0 = 0, xl, x2,-- be an enumeration of the points in M. Then we obtain
that at B-» oo, V B ( d g ) is approximated by the distribution

in the sense that for any smooth test function cp(g),

The weights pa,j are found from the fixed point equation v = Q B ( v ) . They
satisfy the equations

Formula (5.11) for the free energy can be written as

where WB,(ds) is the probability distribution of
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From (5.22), (5.23) we obtain that WB(ds) is approximated by the distri-
bution

where

and wa,j are some weights expressed in terms of pa ;j The approximation
means that for every test function q>(s),

The function

is even and it has the following asymptotics as B—> oo:

and

Combining these asymptotic formulas with (5.27), we derive from (5.25)
that

hence
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From (5.18) we obtain the residual entropy at T = 0 as

This is an exact formula. Observe that S00 does not depend on a = 2 + e,
0 < £ < 1 .

We do not have an analytic expression for wa,j but some estimates
and numerics shows that the weight w1,0 is noticeably larger than the other
weights. If we keep in (5.32) only the term w l , 0 then (5.32) reduces to the
Bruinsma approximation (see [Br]),

From (5.27) we find w1 = pq, hence

Formula (5.32) remains valid for a = 2 and a = 3, with some different
weights wa , j . Approximation (5.33) can also be extended to a = 2 and
a =3. It gives (cf. [Br]):

which gives the values of S(0)
00 at the spikes a = 2, 3 higher than the value

(5.34) on the plateau 2 < a < 3 .

6. PROOF OF THEOREMS 2.5 AND 2.6

Proof of Theorem 2.5 from Theorem 2.6. Note that by symmetry

hence by Theorem 2.6
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In addition by F.K.G.,

We would like to prove that for almost all c we actually have a strict
inequality, at least for one x. Define the random variable

where a ( x ) > 0 are arbitrary numbers such that

Then F ( £ ) > 0 and E e F ( £ ) >0. Define

Then Pr A>0, because otherwise E e F ( e ) = 0 . Let T: V--> V be a shift of
the Bethe lattice. Notice that

Hence, if F(£) > 0, then F( T£) > 0. Therefore, A = TA. Since {£x} are inde-
pendent, the shift T is ergodic and consequently Pr A = 0 or 1. Since
Pr A >0, actually, Pr A = 1. Hence, for almost all £

for at least one x. This proves that u+
B,e=u-

B,e for almost all E and ends the
proof of Theorem 2.5.

Proof of Theorem 2.6. Let gx satisfy the basic equation

Assuming that gy and gz are independent and have the same distribution
p(dg), the equation (6.1) determines a distribution of gx, which we denote
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by Qp(dg). We are interested in the behavior of pk = Qkp0 as k->oo,
assuming that

which corresponds to ( + )-boundary conditions, see (1.2) and (3.3).
The key point is some inductive assumptions on pk which hold for p0

and which are reproducible when we pass from pk to pk +1. To formulate
these inductive assumptions we need some definitions. Let a. = HF(T) + e.
We will assume that e > 0 is sufficiently small, so that it satisfies some
conditions formulated below. Let

and let a > 0 be the point where

(see Fig. 7). Observe that

Indeed, let f(t) = fB(2t) and let g0>0 be a solution of the equation
f(go) = 1. Then

From here,

which was stated.

Fig. 7. A narrow corridor of order O(e) in the vicinity of g = a is responsible for appearance
of a long intermittent trajectory near a and finally for asymmetric distribution of effective field,
cf. Fig. 3. The same phenomenon one has in the vicinity of g = — a.
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Near a, there is a narrow corridor of width of order O(e), between the
diagonal y = g and the graph of equation y=f-(g). This implies that we
have a long intermittent trajectory { g n = f - ( g n - 1 ) } near a.

Consider some points b, c, d such that a < b < c < d and such that
when e -> 0,

The notation f<< g as e -» 0 means that limc _ 0„ f/g = 0. Define a sequence
b0>b1 > ••• >bN by the recursive equation

We assume that b = b0, i.e.,

and we choose

Define then bN + 1 , bN+2,- by the equation

Let

To avoid technical difficulties we will assume that p k ( { d } ) = p k ( { c } } =
p k ( { b n } ) = 0 for all n.

Inductive assumption Ik

( i ) p + (k)>0.499;

(ii) po(k)<0.13;

(iii) pn(k)<1/8.2-n n = 1, 2,....
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Main Lemma. There exists e ( T ) > 0 , which depends continuously
on 0<T<TC, such that for 0 < e < e ( T ) , I k =>I k + 1 , k = 0, 1,2,....

Proof. Assume that (i)-(iii) hold for pk and prove that (i)-(iii) hold
for Pk+1.

Proof of (i). Observe that by (6.5), 0 < d— a«.1. This implies that

(see Fig. 7). In addition

Therefore

if N is sufficiently large. This proves (i).

Proof of (ii). Assume that g x e [ b , c ] . Then by (6.1) two cases are
possible:

Case 1. EX =a. and

and

Case 2. £,x= — a. and

Let us estimate probabilities of these two cases.

Case 1. From Fig. 7 it is clear that if ge [b, c] then f-1
+ (g)<a, hence

either gy < a or gz < a. The probability of this possibility is evaluated by



Phase Diagram of RFIM on the Bethe Lattice

Case 2. In this case,

71

where b _ 1 = f -1
+ (b), c_1 = f -1

+ (c) . From Fig. 7 it is clear that |b — b_ 1 | ,
| c - c_ 1 |< Ce, hence

and c _ 1 < d , so that

Consider two cases for gy, gz.

Case (a): gy,gz<d. By (i),

hence the probability of this case is estimated by

Case (b): either g y > d or g z > d . Let, say, g y > d . Then by (6.5) and
(6.10),

(use that d — c = 2(b — a) and 0<c_ 1 — b<d — c), hence the probability of
this case is estimated by

Thus, p0(K + l )<d+d 1 +d 2 <0 .13 . This proves (ii).
Let us prove (iii) for pn(k +1). First we consider n = l,2, then

2 < n < N , and finally n>N.

Proof of (iii) for p1(k + 1). If g xe[_b1 ,b0 '] and Ex=a = a, then
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hence either gy<a or gz < a, and the probability of this case is estimated
by J = 2-N« 1. Assume that £,x= —a. Then

Consider two cases

Case (a), gy, g z > b 0 = b. Then gy, gz < c, because otherwise (gy + gz)/2
> b_1 (use that 0 <b_1 — b0 < Ce << c — b). Hence the probability of this case
is estimated by

Case (b), either gy<b0 or gz<b0. Let, say, gy<b0. Consider two
subcases,

Subcase (b1), b0<gz< c. The probability of this subcase is estimated
by

where the factor 2 comes from the possibility to exchange gy and gz. Since

we obtain that

Subcase (b2), gz>c. Then

Since c — b >> e, this implies that

and therefore,

Thus, the probability of this subcase is estimated by S3 = 2
N0« 1.
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Combining all cases and subcases we obtain that

This proves that p 1 (k + 1) <1/16, hence Ik + 1(iii) holds for n= 1.

Proof of p2(k + 1)<1/32. As before, the case £x = a. has a negligibly
small probability S « 1. Let £x = — a. Then

Consider two cases.

Case (a), gy, g z '>b1 . Observe that either g y <b 0 or gz<b0 ' hence
the probability of this case is estimated by

Case (b), either g y<b1 or g z<b 1 . Let, say, g y <b 1 . Consider two
subcases,

Subcase (b1), gz<c. The probability of this subcase is estimated by

Observe that by Ik,

Since

we get that

Subcase (b2), g z >c . Then g y < b N 0 and the probability of this sub-
case is estimated by S3« 1. Thus,

This proves (iii) for n = 2.
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Estimate of pn(k + 1) for 3 < n< N. As before, the case £,x = a has a
negligibly small probability 6 such that 2NS « 1. Let £x= — a. Then

Consider two cases.

Case (a), gy, g z > b n _ 1 . Observe that either g y < b n _ 2 or g z < b n _ 2 .
Let, say g y < b n _ 2 . Then g z e [ b n _ 1 , b n _ 3 ' ] , because

(use that f ' _ ( g ) < 1 for g>a). Hence the probability of this case is
estimated by

Case (b), either g y <b n _ 1 or g z < b n _ 1 . The probability of this sub-
case is estimated by

Thus,

This finishes proof of (iii) for n < N .

Proof of (iii) for n > N. Let us consider £,x= — a. Then

Since f ' - ( g ) < 2 tanh B and f(a) — a — e, we obtain that

where C0 does not depend on e. This implies that
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where

and f is a number that does not depend on e. Hence

Let us estimate

If (gy + g z , ) / 2 e ( b j , b j _ f ] then either g y < b j _ f or g z < b j _ , . Let, say,
gy<b j_ f,. Assume that gye [bm + 1, bm]. Then gze [ b p + 1 , bp], with

where C1 does not depend on e. Therefore,

Since tanh B< 1, this implies that

and pn(k + 1) 1/8 • 2-n . This finishes the proof of the inductive assumption
IK+1. Main Lemma is proven. |

Completion of the Proof of Theorem 2.6. The one-point distribu-
tion of the ( + )-state is given by

The effective field g+
y (£) has the distribution
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By Main Lemma, v+ satisfies the inductive assumption Ik. Observe that

ByI k ,

which implies that for sufficiently small e > 0,

This finishes the proof of Theorem 2.6. |

On the Discontinuous Change of the Support of the Invariant
Measure v+B(dg) at a = HF(T). Let T<TC. Then for 0 < a < H F ( T ) the
support of the limiting measure

lies in the interval

where t = M + (B , + a ) > 0 is the largest among three solutions of the fixed
point equation

Indeed, by the F.K.G. inequality, for all realizations £ of the random exter-
nal field,

hence the support of the distribution of ,gx
+•+(£; B), which is v +

B (dg ) , lies in
the interval [M+(B, —a), M+(B, a)] on the positive half-axis, which was
stated.
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For a>HF(T) the fixed point equation fB (— a+ 2t) = t has a unique
solution M - ( B , — a ) < 0 . We claim that for every y > M - ( B , —a),

Indeed, let N = N(y) be such a number that for all t 0 <1,

where f_ ( t ) = f B (— a + 2t and fN means the N th iteration of the map
f_: t ->f_( t ) . There is a positive probability p(N) >0 that Ey= — a for all
y in the ball of radius N + 1 centered at x0. In this case the recursive equa-
tion gx = fB(Ex +gy + gz) implies that

for all x in the ball of radius N, hence

with probability at least p(N)>0, which was stated.
The relations (6.12) and (6.13) show that at a = HF(T) the support of

the invariant measure v +
B ( d g ) changes discontinuously. Since the free

energy F + (B,a) is expressed as an average with respect to a finite product
of the measures v +

B ( d g ) (see formula (5.11) above), we conjecture that
F(B, a) is nonanalytic in a at a = H F ( T ) but we cannot prove it rigorously.
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