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On the Phase Diagram of the Random Field
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The ferromagnetic Ising model on the Bethe lattice of degree k is considered in
the presence of a dichotomous external random field ¢, = t+« and the tem-
perature T'>0. We give a description of a part of the phase diagram of this
model in the T-« plane, where we are able to construct limiting Gibbs states
and ground states. By comparison with the model with a constant external field
we show that for all realizations & ={&, = ta} of the external random field:
(i) the Gibbs state is unique for T> T, (k =2 and any «) or for a >3 (k=2 and
any T); (ii) the +-phases coexist in the domain {T< T, asHF(T)}, where T,
is the critical temperature and H¥(T) is the critical external field in the
ferromagnetic Ising model on the Bethe lattice with a constant external field.
Then we prove that for almost all £ (iii) the +-phases coexist in a larger
domain {T<T,,a < HF(T) +&(T)}, where &(T) > 0; and (iv) the Gibbs state is
unique for 3z a>2 at any 7. We show that the residual entropy at T=0 is
positive for 32« > 2, and we give a constructive description of ground states,
by so-called dipole configurations.

KEY WORDS: Random external field; Ising model; Gibbs states; ground
states; Bethe lattice; residual entropy; dipole configurations; Griffiths
singularities.

1. INTRODUCTION AND DEFINITIONS

It is known that the Ising model on the Bethe lattice 7, of degree k=2,
exhibits rather nontrivial behavior from the point of view of the structure
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of Gibbs states [ BG, BRZa]. The problem gets obviously more com-
plicated when the system is embedded into an external random field. In this
paper we will be interested in the random field Ising model (RFIM) in the
dichotomous external random field taking values &, = +a, x € V(1,), where
M(z,) is the set of vertices of the Bethe lattice 7.

The case k=1 corresponds to the one-dimensional RFIM. In this case
there is no phase transition for the inverse temperature =T "! < o (ie,
the Gibbs state u, . is unique for all f< oo and all configurations &=
{¢., xe V(t,)}). The structure of the ground states u,, =limy_, ., ug ¢ is
described in our previous paper [ BRZb]. The exact formula for the
residual entropy S >0 is derived by Derrida et al. [DVP] (see also
[BPZ, V, PF, KM]). Some partial results for f< oo are obtained by
Bruinsma and Aeppli (see [AB, BA]). For the case k=2 Bruinsma [ Br]
proposes some clever theoretical arguments, to describe the structure of the
ground states for RFIM on the Bethe lattice, and to estimate the residual
entropy at f— co.

The aim of the present paper is to give a rigorous study of the phase
diagram of the RFIM on the Bethe lattice for the dichotomous random
external field. The rest of this section contains the main notations and
definitions. Section 2 is devoted to the formulation of our main results.
They are summarized in Fig. 1 and they can be formulated as follows:

o The Gibbs state is unique for all « and for all realizations
E={¢,, xe V(1,)} of the external field, if 7> T,, where T is the critical

temperature of the model in the absence of external field. (This result is
valid for any degree k =2).

o If k=2 and a> 3, then the Gibbs state u, . is unique for all 7>0
and al/l {. In this case the ground state u,, . =limg_, o, py » exists, and it is

concentrated on the spin configuration that follows the sign of the external
field.

o If k=2 and 2 <a <3, then the Gibbs state is unique for all 7>0
and for almost all realizations ¢ of the external field. We show that in this
case the ground state exists, and it is concentrated on the set of dipole
ground state configurations described in detail in Section 4. In Section 5 we
derive an exact formula for the corresponding residual entropy. We show
that the residual entropy is constant for 2 <a <3 and it has spikes at the
endpoints « =2 and a =3 (cf. [Br]).

o In the low temperature domain, T<T,, we show that for all
a < HF(T), where H¥(T)<1 is the critical constant external field, and
for all £, there are at least two different extreme Gibbs states, which are
limiting Gibbs states 4 7 . obtained with ( +)- and (— )-boundary conditions.
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Fig. 1. Phase diagram of ferromagnetic RFIM on Bethe lattice for £ =2. In domain / one
has two extreme Gibbs states corresponding to ( &) boundary conditions for all £, while in
domain [/ they are different for almost all configurations of the external field £. The boundary
of domain [/ is the line of Giffiths singularities corresponding to a nonanalytic C* transition.
Domain {«>3 or 7'>T,} corresponds to uniqueness of the Gibbs state for a/l & For
{2<a<3and T<T,} the Gibbs state is unique for almost all ¢ and the residual entropy S,
is a positive constant for 2 <« <3 with spikes at o =2 and «a =3. We guess that in fact the
Gibbs state is unique for afl ¢ in domain {a> HA(T),0<T< 7.} and unique for almost
all & in domain 7V, where H**(T) is again a line of Giffiths singularities. We have no guess
for the rest of the domain 7/J. Numerical simulations strongly suggest uniqueness for
{1l <a<2, T<T.}. Approximating formula for residual entropy (see Section 5) gives S, >0
for {1<a<2, T=0}.

res

For a <1 the corresponding ground states uF . =lim,_, , uj . are concen-
trated on ( +)- and ( — )-spin configurations, respectively.

o We extend the above domain where the ( +)- and (— )-Gibbs state
are different, using an intermittency of the effective external field for small
values of e=a— H(T)>0 (see Section 6). Namely, we show that there
exists &(T) such that in the domain {0<T<T,, H'(T)<a<H"(T)+
&(T)}, the two limiting Gibbs states with (+)- and (— )-boundary condi-
tions are different for almost all realizations ¢,

The line « = H"(T) is the line of the Griffiths singularities. We show
that on this line there is a discontinuous change of support of the probabil-
ity distribution of the effective external field. We conjecture that the discon-
tinuous change of support leads to a non-analyticity of the (internal) free
energy (of, say, the ( + )-state: on the Bethe lattice the free energy depends
on the Gibbs state) as a function of « at a= H"(T). Since these averages
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Fig. 2. Asymmetric distribution of effective field in domain I: f=1.0, a =04.
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Fig. 4. Symmetric distribution of effective field in domain /71, f=1.0, a=1.0.

are C*-functions of «, the line «x=H(T) is the line of the Griffiths
singularities (cf. [ Br]).

o We conjecture that in the domain {0<T<T,., H*(T)—n(T)<
a < HA(T)} the Gibbs state u, . is unique for almost all £ The line
H?*Y(T) corresponds to the critical constant external field for the
antiferromagnetic Ising model, see (2.1). We guess that H*Y(T) is the line
of the Griffiths singularities and that the Gibbs state is unique for a@// £ in
domain {0 <T<T,, H*(T)<a}.

Let us introduce the main definitions. The Hamiltonian of the
ferromagnetic random field Ising model is given by

H=— Z J.\jro..\’a_v_ z é.\'o.\' (11)

Here o, are spin variables taking values +1, £, stands for the random
external field, and J_, >0 are the coupling constants. We shall consider
uniform interactions J,, =1, and a dichotomous field, ie., the ¢ are real
independent random variables taking values +o with probability 1/2.
These variables are defined for each site of a lattice and we shall be con-
cerned by the Bethe lattice t, of degree k =2, ie., 1, is a tree with exactly
k +1 vertices coming out from each vertex x. We use V and L to denote
respectively the set of vertices and edges of t,. There is a distance d(x, y)
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on V which is the length of the unique path from x to p, assuming that the
length of an edge is 1. Let us fix a vertex x, as the origin. We define

W,={xeV:d(xy, x)=n}

the sphere of radius » and
V,={xeV:dxy,x)<n}= ) W,
m=0

the ball of radius » with the center at x,. We let L, ={{x, y)> :x, yeV,,
d(x, y)=1} be the set of edges with endpoints in V,, and for xe W,
n=0,1,., denote by S(x)={yeW,, :dx, y)=1} the set of direct
sucessors of x. Given a realization &= {&,} ., of the external field, the
finite-volume Gibbs measures, on the g-algebras Z(V,)={o,={0,= £1,
xeV,}}, at inverse temperature f=T7"! and boundary condition &
(a configuration on V\V,) are defined by

ﬂn(an!5)=Z;‘(5)CXP{/f Y 00,48 Y Eoutf Y axcfy}

{x,y>eL, xeV, xe W,

yest)  (12)

where Z,(d) is the partition function.

Below it will be useful to consider a more general setup of the problem
corresponding to real-valued boundary conditions. It is related to construc-
tion of (nonhomogeneous) Markov chains on the Bethe lattice 7,. Let A=
{h,, xe V} be a set of real numbers. We define for each n, the probability
distributions

s |h) =71 exp{ﬂ S o, 4f Y Eoeth Y hxax}

{x,y>eL, xeV, xe W,
(1.3)

where Z,, is the normalizing factor. These probability distributions are said
to be compatible if for all n> 1,

Z /un(an|h)=/un—l(an—l|h) (14)
o,=+1,xeW,

It is easily verified that the probability distributions (1.3) are compatible if
and only if for any x e V the following equation hold:

he= 3 Jih,+¢,) (1.5)

yeS(x)
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where

Ly SOSMAOtD)_ L anhl (tanh g)(tanh )] (16)

fﬂ(x)=ﬁ ncoshﬂ(x—l)_ﬂ

Indeed, one has

Z eﬁ(ax+hy+€y)a =2COSh ﬂ(ox+hy+éy)

o,=+1

=exp{ ffs(h, +&,) o+ Bdg(h,+ &)} (1.7)

for all y € W, . The second equality is satisfied for ¢,=1 and ¢, = —1. This
is done by taking f4(x) defined as above and

dg(x)=(2)"" In[4 cosh f(x + 1) cosh f(x —1)]

If the probability distributions u,(o,|h) are compatible, then by
known theorems they are projections on ¥, of an infinite-volume Gibbs
measure (o |h), and in the opposite direction, any limiting (in particular,
any extreme) infinite-volume Gibbs measure u{c|4) has finite-volume com-
patible projections of the form (1.3) (cf. [G]). We will call a Gibbs state,
any infinite-volume Gibbs measure y(o) on V.

By the Dobrushin—-Lanford-Ruelle theorem, if u(o) is a Gibbs state
then for every n, the conditional distribution of g, =0/, , under the condi-
tion that outside of V,, o coincides with some fixed configuration 4, is
given by (1.2). The conditional distributions (1.2) are called specifications
of u(o), see e.g. [G].

Let us recall that in the case of homogeneous Markov chains defined
by equations (1.3) when for all x, £, = H (constant field) and &, = h,, the
equations (1.5) read

hy=kfy(h,+ H) (1.8)

Then there exists HF(T) <k — 1, given by the equation

. 1/2 _ 1/2
HF(T)=ﬁ“{kartanh(é%_ﬂ) —artanh (kk_lé0> } (1.9)

where §=tanh f, such that the equation (1.8) has
(i) a unique solution for T2 T,= l/artanh(l/k) or for T< T, and
|H| > H"(T)
(i) two distinct solutions if T< T, and |H| = H*(T)
(iii) three distinct solutions if T< T, and |H| < H¥(T)
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2. MAIN RESULTS

By us e where 0<f<oo and &={¢,=+a,xeV}, we denote a
Gibbs state corresponding to specifications (1.2). The existence of uy . for
all f# and configurations & follows from the weak compactness of the space
of probability measures on X( V'), [ G]. By ground state we understand the
limit, u, ,=1limg_, ,, pp ¢, if it exists, where ug . is a Gibbs state.

Theorem 2.1. If 7> T, then uy . is unique for all &.

Theorem 2.2, Let k=2. If a> 3, then

(a) pg . is unique for all 0 < f< oo and all &

(b) the limit (ground state) u,, . =limg_ o, pg ¢ exists and it is con-
centrated on a configuration such that o, =sign ¢, for all xe V.

If 3>a>2, then pg4 » is unique for all £ and all 0 < < co such that
tanh[ fla —1)] +tanh[ f(3 —a)] < 1

Remark. Observe that for a=2 the last condition reduces to
2 tanh § < 1, which is equivalent to < .. The domain of “the uniqueness
for all £” in Theorems 2.1 and 2.2 can be probably extended as follows.
Consider the critical constant external field of the antiferromagnetic Ising
model on the Bethe lattice:

kO —1\'72 k—1/6\'?
AF T | r _
HANTY=§ {kartanh(k/g_J +artanh<k_0> ]<k+:21)

where 0 = tanh 8 (see Fig. 1). We conjecture that if T< T, and o> HAF(T),
then the Gibbs state u4 » is unique for all ¢ (see a discussion in the proof
of Theorem 2.2 below). It is also plausible that there exists a continuous
function #(7T)>0 on 0<T<T, such that if T<T, and HAN(T)>a>
HAF(T)—n(T), then the Gibbs state uy . is unique for almost all & The
critical line a = HAF(T) is probably the line of the Griffiths singularities
(cf. [Br]), like the ferromagnetic critical line « = H¥(T'). In other words,
we expect that some of thermodynamic averages are C® non-analytic func-
tions of a at o = HAY(T).

Theorem 2.3, Assume that 0<T <7, and a<H"(T), see (1.9).
Then for any k=2 and all realizations & of the external field,

(a) there exist two different extreme Gibbs states u ;. and u g . which
are limiting Gibbs states with + and — boundary conditions;
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(b) if o<1 then the limits (ground states) ,u(};’ c=limg, u ;t, ¢ exist
and they are concentrated on configurations {o,=1,xeV} and
{o,=—1,xeV}, respectively.

Theorem 2.4. Let k=2 and assume that 2 <a < 3. Then

(a) for all f< oo and for almost all realizations ¢ of the external
field, there exists a unique Gibbs state s «

(b) for almost all £, there exists a ground state p., »=limg_, , tg ¢
and it is a probability measure concentrated on the set of dipole ground
state configurations which are described in Section 4 below.

The residual entropy S, of the ground state u, . is calculated in
Section 5.

Theorem 2.5. Let £ =2. Then there exists a positive continuous
function &(7) on 0<T< T, (¢(0)=¢(T,) =0) such that f 0 <7< T, and
HY(T)<a<HY(T)+¢(T), then for almost all &, ug . # iz ..

Theorem 2.5 is derived from the following

Theorem 2.6. Under the assumptions of Theorem 2.5, let 0<
T<T, and HY(T)<a<H¥(T)+&T). Then under the assumptions of
Theorem 2.5 one has:

E, jaxﬂ,;fc(a) = (0,5 >0

Before passing to proofs we would like to make few remarks about our
results. Theorems 2.1, 2.2, and 2.3 are valid for a// realizations ¢ of the ran-
dom external field and these theorems are relatively easy. To prove them
we use some contraction estimates and F.K.G. correlation inequalities to
show that the ferromagnetic Ising model on the Bethe lattice with a
dichotomous random external field is majorized, in an appropriate sense, by
the model with a constant external field of the same strength.

On the contrary, Theorems 2.4 and 2.5 are valid only for almost all
realizations of ¢ and their proof is much more difficult. It is worth to notice
that in these theorems the condition “for almost all realizations &” cannot
be replaced by the one “for all realizations &£.” For instance, in Theorem 2.4
one can take 2 <a < HA¥(T) and a chess-board realization ¢ (a realization
with alternating pluses and minuses). Then the Gibbs state u, . is not
unique for this &, although by Theorem 2.4 it is unigue for almost all &.
Similarly, in Theorem 2.5, uj . =pu; . if one takes £, =a>H"(T), a con-
stant realization, while py . #pup . for almost all {.
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An interesting feature of the Ising model with the dichotomous ran-
dom external field is that the residual entropy S, at T=0 is positive for
2 <a < 3. We conjecture that it is positive in the interval 1 <o <2 as well
but we cannot prove it. Convincing heuristic arguments in favor of this
conjecture are given by Bruinsma [Br]. We calculate S, in Section 5
below, and it turns out that S_(«) = const in the interval 2 <o < 3 while at
o=2 and a =23 the residual entropy has two spikes. This behavior of the
residual entropy is easily explained by the structure of the Gibbs measures
in the limit 7— 0. Namely, for all 2 <a <3 the limiting Gibbs measure
Moo e =limg_, o g ¢ 18 independent of o, while for a=2 and a«=3 it is
concentrated on much bigger sets of configurations than for 2 <a <3 (see
Section 4). Bruinsma [ Br] derives a good approximate formula for S (a)
and he shows that this approximate formula predicts that S_(a) is con-
stant in every interval 1+ (2/n+ 1) <a<1+2/n, n=1, 2,.., with spikes at
a=1+2/n

The central point in the proof of Theorem 2.5 in Section 6 is to show
that the limiting probability distribution w(dh,) of the effective external
field A, is not symmetric under plus boundary conditions. To prove the
asymmetry of v(dh,) we use the intermittency of the iterations of A, for a
small difference o — H¥(T) >0, and we show that the main mass of vw(dh,)
is concentrated on the positive half-axis, which gives Theorem 2.6. Then we
derive Theorem 2.5 from Theorem 2.6 using some soft ergodic arguments.

3. PROOF OF THEOREMS 2.1-2.3 AND 2.4a

We introduce the variables g, = f4(¢, + A,). Then the recursive equa-
tion (1.5) reads

h,= Z g (3.1)
yeS{x)
This implies that g satisfies
yeS(x)

By (1.3) and (3.1), the probability distribution u(s,|g), 6,=0,, can be
written as

wo,lg)=Z e {s T 00,48 T Goth T og) (33)
(x,y>elL, xevV, xe W,
yeS(x)
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We freely call g = {g,} the effective external field, along with h = {h,}. We
recall that by F.K.G. inequalities [ FKG] one has the following proposi-
tion (see [LM]).

Proposition 3.1. The Gibbs states 41 . and p1 , exist and they are
extreme for all & If ug . =uz ., for a given &, then the Gibbs state is unique
for this &.

We denote by g* ={g¥, xe V} the configurations that correspond to
the Gibbs states u7 .

We use below some properties of the function (1.6). They are sum-
marized in the next

Proposition 3.2.
fﬁ(_x)z ‘—fﬂ(x)a fp(00)=1

0<;§fﬂ(x)<tanhﬁ Vx#0, if,3(0)=tanhﬂ (3.4)

dx
1
%fﬂ(x) <§ if x=1 (3.5)
—fﬂ(x l—tanhﬂ if x=2 (3.6)
d? d?
I —— f3(x) <0 Vx>0, Wf3(0)=0 (3.7)

Proof. All the relations (3.4)-(3.7) result from the following two
equations:

Ed;f/, E[tanhﬁ (x+1)—tanh f(x

, (3.8)
LAyNRIR | S S } '

dx2 7P T2 | cosh? f(x+ 1) coshZ f(x — 1)

Now we turn to the proof of Theorems 2.1-2.3 and 2.4a.

Proof of Theorems 2.1 and 2.2. Consider the set of recursive equa-
tions (3.2). We have

Togr=fa0) Y (gf-g;,;)

yeS(x)
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for some ce[{,+ 2 e &, » S5t 2yesin g;'] so that

g5 —g I<klfpc)l sup |g) —g, (3.9)

resS(x)

When 7'> T, one has tanh g < 1/k, so that by (3.4), fs(c) < 1/k. By apply-
ing recursively the inequality (3.9), we get that gF =g . Hence g, =p ;..
In virtue of Proposition 3.1 this proves Theorem 2.1.

To prove Theorem 2.2, we first remark that by Proposition 3.2,
| f5(t)] < 1. This implies that |g,| <1—¢ for some J=4d(a, f,k)>0 and
all y. Hence, when «>2 and k=2, we have that |c|] >a—2+24 in (3.9).
By (3.8),

f(c)=3{tanh (Jc| + 1) —tanh f(|c| — 1)}
hence for some J,> 0,
0< fplc)<3—dg
provided « >3 or 3>x>2 and
tanh (o —1)+tanh (3 — o) < 1

In the both cases, iterating (3.9) we conclude that g} =g . Hence, the
uniqueness part of Theorem 2.2 follows from Proposition 3.1.

It is interesting to notice that the worst estimate on f"(¢) occurs when
the quantity |£,+ g, + g.| is minimal. For a>2 this happens when the
sign of £, is opposite to the sign of £, and ¢, or if we extend this property
to the whole lattice, when £ is a chessboard configuration. The chessboard
¢ is equivalent (by a gauge transformation) to the antiferromagnetic model
with constant magnetic field, and this motivates our conjecture that the
uniqueness for all ¢ holds for a > HA¥(T).

For the Statement (b) of Theorem 2.2, we observe that for n=1 one
gets by (3.3) that

:u(o-x|g)=Z_lexp{ﬁ[éx+ Z ngl Ux}

yid(x, y)=1

When |, | >3 then [$,+ 3, ux =1 &1 >0 and sign(&,+ 3, ux, =1 &)
=sign &,.. Thus we finish the proof by taking the limit f— oo. |
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Proof of Theorem 2.3. Let {-> ,‘;té denote the expectation with
respect to the measure 47 .. Then by the conditions of Theorem 2.3 and by
the F.K.G. inequality one gets (cf. the one-point measure above) that

(05200 f >0
and
<ax>ﬁ_¢’< <ax>ﬁ_{ac} <0

This proves that uj, #uy . Their extremality follows from Proposi-
tion 3.1. Since for a< 1 limp_,w<ax>§t{¢u} = 41, we obtain that for all
realizations &, o, =1 a.e. with respect to uz . and o, = —1 a.e. with respect

(7 |

Proof of Statement (a) Theorem 2.4. For any x, we denote by y
and z, its two direct successors. The recursive equation (3.2) reads

gx=fpllt g, +g) (3.10)
For a given &, let g+ and g_ be the g, corresponding respectively to the

states ug, and u, .. We shall estimate recursively the expectation
E: lgd —g, | We have

gi—gr =folltgy+el)—fl+g, +2e)
=fpclgy —g, +ef —g.] (3.1

where ce[{,+g, +g;7,¢,+g; +g,; ] Let us estimate f(c). Assume
that £, =a > 0. Consider different cases for &, and £,.

Case (i) ¢,=¢&,= —o Then we use the estimate
Sfplc)<tanh g (3.12)

which is valid for all ¢ (see (3.4))
Case (ii) &,+¢&,=0. Let for instance &, =o and &, = —a. Then

g >0, gf> -1
hence

EtgF+gr>1, c>1
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In this case

Faley<3 (3.13)
(see (3.5)).
Case (iii) &,=¢,=o. Then &, +gF + ¢ >2, hence ¢>2 and
f’,,(c)<—§-(1—tanhﬁ) (3.14)
(see (3.6)).

Notice that the probabilities of the cases (i), (ii) and (iii) are, respec-
tively, 1/4, 1/2, and 1/4. Thus by (3.11)—(3.14) one gets for x e W, that

E:lg; —g I <[s-tanhf+35-3+4-5-(1—tanh §)]-2 - E,,,
where

En+1='mué}x Eelg —g: |

n+1

This gives that

3 +tanh §
En<—4'— n+1

Since (3 +tanh f)/4 <1 and E, <2 for all n, this implies by iterations that
E,=0 for all n. Hence for all x, g} =g, for almost all configurations &,
which implies uniqueness by Proposition 3.1. |

4. DIPOLE GROUND STATES

Assume that k=2 and &, = +« with 2 <a < 3. We discuss the ground
state, fio, ¢(0) =limy_, , uy o). Let xe V. Then the one-site projection of
the Gibbs measure (cf. Section 3) can be presented as

:uﬂ,é(o'x)zz_l exp[ﬂax(éx+gyx+gzx+gtx)] (41)

where y, z, t are the nearest neighbors of x. In this section we do not fix the
origin x4 in ¥, and it is more convenient for us to consider the effective
field as a function on oriented edges, g = {g,,}, rather than a function on
vertices g={g,}. In this context, what was before g,, x#x, is now
denoted by g,, where the edge {x, y) goes from x in the direction of the
origin x,. The numbers g,, satisfy the recursive equation

8y = Sp(&at 8an +81x) (4.2)
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At f=w

8ry=(Cxt &oxt8ux) (4.3)

where f, =limg_, , f; is the piecewise linear function:

—1 if x< -1
Solx)=<x if —1<x<1 (4.4)
1 if x>1

For 2<a <3 and almost all &, the equation (4.3) has a unique solution

gxy(é)e{—la —&, &, 1} (45)
where
x=2+e¢, O<exl (4.6)

(see Lemma4.2 below). Consider the partition of V' in three subsets,
V=V,uV_uV°with

Vi={xeV: (& +gm+ gt 8u)>0}
VO={xeV:& +&+ &umt+8un=0}

where g={g,,} is the unique solution of (4.3), g= g(¢). The sets V.,
1° depend on £ We show below that for almost all ¢ the equation (4.2)
has a unique solution g = g(&, f) and the limit lim,_, ., g(&, B) = g(¢, ),
exists. Then g{(¢&, o0) is the unique solution to (4.3). From (4.1) it is clear
that

1 if xeV,
= == 4.7
T T (47)
In other words, at f=cw, o,=10on ¥V, and o,=—1 on V_.

Let us describe o, on V°. Let xe V° Assume, for the sake of definite-
ness, that £, =2 +e¢. Then

24+et+g,t gt 8i=0

and all g’s are from the set { +1, +¢}. Hence two of them, say g, and g,
are —1 and g,. = —¢ (see Fig.5).
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Fig. 5. Ground state of dipole {x, ¢} configuration with x,te V,. The signs (+, —)
correspond to distribution of the external field (charges). “Charge” &, =2+ ¢ polarizes the
neighbours to take opposite signs. The same for the charge &,= — (2 +¢). The dashed line
corresponds to the “current” O<g,= —g,=e<]1, while solid lines correspond to
“currents” = + 1. Positive currents are directed from positive to negative charges.

Then by (4.3},

_Szgh\':él—i_gul-i_gul

which implies that

i =—2—g¢ gt 8n=2 {(4.8)
By (4.3),
gu=Cit gt 8. =2+e—1—-1=¢
gu=¢C+g tgu=—-2—¢e+e—1=—1 (4.9)
Zow=C+8u+t8u=—1
Thus,

él+gw+gu{+grr: —2—¢+e+1+1=0
so that re V°.
This proves that if x eV, and {,=2+¢ then there is a neighboring

vertex ¢ such that 1e V° &,= —2—¢, and g, = —g,, =& This motivates
the following

Definition 4.1. Two neighboring vertices x,t are called a dipole if

X«IEVOa 5_r+él:Oa |g.\'tl:|g1xl=8 (410)
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We call £, a charge at x and g, a current from x to 1. We call any connected
component of the set ¥° a dipole polymer, where we assume that two vertices
x, te V° are connected if d(x, t)=1.

Observe that in any dipole {x, ¢}, the charges ¢, and £, have opposite
signs and the currents are

gsign(&,) if p=t¢
—_— - = . 1
8px=8xp {Sign c. it pti (4.11)
In addition,
éy:'fz=ét’ éuzév:éx (412)

so that the charges in the dipole attract from the outside the charges of the
opposite sign (see Fig. 6). Indeed, consider, for instance, £,. From (4.8) and
(43), 1 =g, =¢,+8,.+8,., where p and g are nearest neighbors of u,
which implies that &, cannot be —2 —¢, hence ¢,=2+e¢. This proves
(4.12).

Every dipole polymer consists of dipoles, as shown in Fig. 6. In Fig. 6
the dipole bonds are shown by dash lines, and the bonds connecting
dipoles between themselves and with the environment are shown by solid
lines. Observe that g,, = —g,., = +¢ on dash linesand g,,= —g,., = *1 on
solid lines. The sign of g,, is determined by the rule that positive current
goes from + to —.

In any dipole polymer the charges are alternating. This implies that for
almost all ¢ there is no infinite polymer. On the other hand, there is a

Fig. 6. Configuration of “dipole polymer” corresponding to a ground-state configuration of
charges {¢ = +(2—¢)} and “currents™; {g,,= e} (dashed lines) and {g, = +1} (solid
lines).
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positive probability of appearing a given polymer at a given place in V.
Hence V° consists of an infinite number of finite dipole polymers,
Vo=Ug_, Vi, and the dipole polymers ¥, have a positive density on V.

Consider a polymer V,. Assume that xeV, and y¢V, with
d(x, y)=1. Then

yeV,, T=sign¢, (4.13)
Indeed, let for the sake of definiteness £, =2+ ¢. Then
I=8p =Sl +8n+84y) =fo(2Z+etg,+8,)
which shows that g,, +g,,> — (1 +¢). Hence
$t 80 t8ytey=22+e—1-1—6=0

so that y cannot be from V_. Since y ¢ V', this implies that ye V. (4.13)
is proved. Thus on the boundary of a polymer ¥, the charge of any bound-
ary point y determines the component ¥, to which y belongs.

Let {x, t} be a dipole. Let us determine the possible values o,, o, of
a ground state. Assume first that 2 <a <3, We have that

1p, {0, 0)=Z 7 exp{fl0,0,+ (Ex+ Gyt 8ax) O+ (& ¥ 8 +80e) 0.1}
Since x, te VO,

it 8t 8= —8ur &t 8ut&u= —&u
and

Ug 0., 0)=Z""exp{f(0,0,+8u0x+8:x0)} (4.14)

Assume, for the sake of definiteness, that ¢, =2+¢, &, =—2—¢ Then
ix= 76 & =¢ and

19400 0,) =2 exp flo .0, + 20, —e0,)} (4.15)

Since 0 <g <1, the ground states (ff— oo) correspond to g,0,=1, ie,
g.,=0,=1,0,=0a,= —1. In other words, on any dipole we have either the
(+ )-state or the ( — )-state.

Let x, 1€ ¥V, be nearest neighbors belonging to two different dipoles.
Assume that &, =2+¢ &,=-—2—¢ Then g,,=—1, g,,=1 and (4.14)
reduces to

#ﬁyf(oxsal)zz—l exp o0, +0,—0,) (4.16)
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and the ground states are
(ax= 1! g,= 1)’ (ax= —l’al: —“1)’ (ax= ]’ g,= —1) (417)

In other words, between two dipoles we can change the sign of o,
from sign £, to sign &,,

Definition 4.2. Assume that 2 <a<3. Let V,=V,(&) a dipole
polymer. A configuration o= {g,, xe V;} on V, is called a dipole ground
state configuration if

(i) o,0,=1 for every dipole {x, ¢} in V,,

(ii) either g,0,=1 or {o,=sign ,, g, =sign &,} for every pair {x, t}
connecting two dipoles in V.

We denote by M, = M,(&) the set of dipole ground state configura-
tions on V,(¢&).

Definition 4.2 describes a dipole ground state configuration for the
case when 2 <a < 3. For the cases a =3 and a =2 it should be modified as
follows. Observe that for e =1 (a=3) formula (4.15) coincides with (4.16),
hence the ground states on a dipole are (4.17). This leads to the following

Definition 4.2, for a=3. Let ¥V, =V, (&) be a dipole polymer. A
configuration o={og,,xeV;} on V, is called a dipole ground state
configuration if for every neighboring x,1eV, either o,0,=1 or
{o,=signé,, o, =sign¢&,}.

Notice that the difference between a ground state configuration for
2 <a <3 and for a =3 is that for 2 <a <3, 6,0,=1 on any dipole while for
a=3 either g,0,=1 or {o,=sign¢,, o,=sign o,}. Therefore the number
of ground state configurations for a =3 is bigger than the number of those
for 2 <a < 3. This is reflected in the behavior of the residual entropy, which
is higher at =3 (at the spike) than at 2 <a <3 (on the plateau). We
evaluate the residual entropy in the next section.

When « =2 we have to change the definition of dipole.

Namely, in the case a =2, if xe V'° and, and, say, ¢, =2, g,, = —1,
.= —1, g,=0, then te % but ¢, can be both 2 and —2. Thus we arrive
at the following

Definition 4.1, for «=2. Two neighboring vertices x,? are a
dipole if

X,IEVO, gxl:gtx:()
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Thus, we do not have the restriction ¢, +¢,=0 as in (4.10). Strictly
speaking, (¢, ¢&,) is not a dipole anymore, since it is not necessarily
neutral. We will call (x, ¢} a dipole to facilitate a unique formulation of a
ground state both for 2 <a <3 and for a=2. The definition of a dipole
ground state configuration for « =2 remains the same as in Definition 4.2.
Observe that for a=2 we have more dipoles and, consequently, more
dipole polymers than for 2 <a < 3. This produces a jump of the residual
entropy for a =2 (see Section 5).

Theorem 4.1. Let k=2 and 2 <a < 3. Then for almost all ¢ there
exist a limit, u, (o) =limg_, ., pg o) and

o0

too, e(0) =ﬂ;(UV+)ﬂ;(UV_) H ﬂl;,, ¢(UVk)
ko=

where ,u:f)(a,,i) is a degenerate measure concentrated on {o,= +1} or
{o,=—1}, respectively, and u% (o) is a uniform measure on the set M,
of dipole ground state configurations, so that y’;oyé(o,,k)= 1/|M,| for all
dipole ground state configurations oy, .

Proof of Theorem 4.1. Let A< V be a finite subset. Then

/‘ﬂ,f(aA)=Z_leXpﬂ< Y ox0,+ Y Lot ) gyx0x> (4.18)
{x, y) xed {x, )
x, yed xed, yed©

Lemma 4.1. For every N> 1 and almost all &, as § — oo,
8B E) =8 (00, &)+ B e (&) +O(p~) (4.19)
where g, (00, &)e{ 1, +¢}, e=a—2, and

1

cxy(é)eM={t: t=—2—ln %, m,neN}, N={1,2,3..} (4.20)

We prove Lemma 4.1 in several steps. First we prove some auxiliary
results.

Lemma 4.2. If ¢ >2, then for almost all ¢ the equation

8xu=foollit gt g),  VxeV (4.21)

has a unique solution g = {g,,}.
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Proof. We have the following properties

(1) If¢,.=a, then g,,20;

(2) If¢,=a and max{g,,, g..} =0 then g, =1;

(3) Ifé.=aand max{¢,, ¢, } =a then g, =1,

The properties (1) and (2) are obvious from (4.21) and (3) follows
from (1) and (2).

Denote by ¥V, a half-tree with the root at x, which grows in the direc-

tion opposite to 7. For a given configuration ¢ = {&,, xe ¥V} consider the
sets

A (&) ={veV,: &, =a,max{c,, &} =a S(v)={y, z}}
A_(&)=4,(-¢) (4.22)
A=A, (E)ud_(&)

For a given ¢, we say that there is no percolation by ¥V, \4(&) if every path
from x to oo contains a point from A(&).

Lemma 4.3. For almost all & there is no percolation by V \A(&).

Proof. Let p* be the probability of &’s for which there is percolation
from x to W, under the condition that &£, = +«, respectively. Then if we
consider different possibilities for the field &, at ve Wy={x} and ve W/,
we obtain the recursive equations

+ —1,—-_1 —\2
(P atn 80 429
pn+1:§pn _Z(pn)

By symmetry p,” = p,”, hence
p:+1<%p:

which shows that lim, _, , p;f =0, so that with probability 1 there is no
percolation from x to co. Lemma 4.3 is proved. |

End of the Proof of Lemma 4.2. For a given ¢ ={&,, xe V}, define
the set of points blocking the percolation, as

B(&)={veV,ved(f)and w¢ A(&) Ywen(x,v), w#v} (4.24)
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where 7(x, v) is the path connecting x with v. By the property (3) above,

veAd (&), veS(w), wen(x,v),dv,w)=1

Hence the value g,,.(¢) is uniquely determined for v € B(&). In addition, if
the blocking set B(¢) separates x from oo, the value g,,(&) is uniquely
determined by the values of g,,(&) on ve B(&) (by virtue of the recursive
equation (4.21)). Since B(¢) does separate x from oo for almost all &,
Lemma 4.2 is proved.

Assume that a=2+¢>2 Then the properties (1)-(3) can be
strengthened as follows. Let = co. Then

(1) Ifé,=a,theng,,>¢
(2) Ifé,=a and max{g,,, g..} =¢ then ({,+g,, + g} =>1+2¢
(3) Ifé,=aoand max{¢,, ¢, } =athen (&, +¢,,+g,) 2142

This allows us to prove that if ve 4 (&) then as f— oo,
gu=1+0(f~") (4.25)

The proof is based on the asymptotic behavior of the function f4(¢) as
f— 0.

Lemma 4.4, Asf— o

_{t+O0(p~) if 0<gr<1
f”(’)“{1+0(ﬁ—N) it 1 (4.26)
and
—2s
7o (145)=1 -2 o) (827)

We refer the reader to [BRZb] for the proof of Lemma 4.4. Lemma 4.4
shows that for 71>1+¢ the function fj() is close to 1. We will call the
region ¢ =1 +¢, the plateau.

Proof of Lemma 4.1, The property (3) above implies that if £, =«
and max{¢&,, £,} =a where S(v)= {y, z}, then for sufficiently large f the
value (£, + g,, + g,,) is on the plateau, and, by virtue of Lemma 4.4, (4.25)
holds. This proves (4.19) for ve A(&). Since the blocking set B(&) < A(&),
formula (4.25) holds for ve B(£). For almost all & the set B(&) separates x



Phase Diagram of RFIM on the Bethe Lattice

55

from oo. Now, we can prove (4.19) for all v below B(¢) by induction

moving down from B(&) to x. So we assume that

{gy.,(ﬂ, &) =g,,(00, &)+ e, (&) + O(f~N)
8yl B, £) =82(00, &) + B e (&) + O(B~N)

where g,,, g,,€{ £1, +¢} and ¢, c,,€ M. Then

gvt(ﬂ’ é) =f/}(f,, + gyu(ﬁa 5) -+ gzv(ﬁ’ é))
Consider three cases

(1) &, + 8,00, &)+ g.(0, &) >1
(2) 1€, + g,u(00, &)+ g0, &) <1
(3) &, + g0, &)+ g0, &) =1

Then in case (1), Lemma 4.4 and (4.28) imply that
gu=t1+0(f~Y)

In case (2) we obtain that

gvt(ﬂ’ é):fv+ gy,,(oo, é) + g.(0, &)
+B7 e, (8 + B e (E) + O(B™Y)

=gu( 00, &) + eyl &) + (&) + O(B~F)

This gives the asymptotics (4.19) with

Cor=1Cpyt €€ M

(4.28)

(4.29)

(Observe that the set M in (4.20) is closed with respect to summation). In

case (3) we similarly obtain that

8l B, &) = gul o0, &) + B, (&) + O(B~)

with

Cor= = ign g,(00, &) §In(1 + e 2o+ kD)

In this case again c,(¢) e M, provided that ¢ (&), ¢,,(&) e M. This induc-

tion proves Lemma 4.2 for a =2 +¢&> 2.

In the case a =2 we have to use the following property (4) which

follows from the ones (1)-(3).
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Property (4): If &, =a and either

(a) ¢,=¢,=q,
or

(b) ¢,=a ¢, =—aand max{&,, ¢} =a where {u, v} = S(p),
or

(¢) ¢,=—a, ¢, =aand max{&,, {,} =a where {u, v} = S(z),

then ¢, +g,,+ g,.>2. Indeed, in the case (a), g,,, £.,>0 hence ¢, +
8yxt+8.x=2. In the case (b), g,,=1 by property (3) above, hence
¢+ 8t 822+ 1—122; the same arguments works for the case (c).
For a given &, we define the sets 4% (&) of vertices v e V,, for which the
assumptions of Property (4) hold with respect to the configuration +¢,
respectively. Let A%(&) =49 (&) u A (&).
We use the following lemma, which replaces Lemma 4.3.

Lemma 4.5. For almost all ¢ there is no percolation by V,,\4%¢).

Proof. Let pt be probabilities of percolation from the root x to W,
under the condition that &, = +2. Then p, =p, = p,. Considering the
different possibilities for £, £,, £, and &, we obtain that

Put1 é%pn+%(pn+2pn—1)=%pn+%pn—1
This is majorized by a sequence {b,} satisfying
bn+1:%bn+%bn—l3 b0:p0: b1=p1

Two fundamental solutions for the last equation are b, =47 , where 4, ,
are to be found from the quadratic equation

MP=31+%F or 8A?—51-2=0

This gives
5+./89
ha=Te

Since |A; ,| <1, this implies that lim,_,,, b,=0, hence lim,_ , p,=0.
Lemma 4.5 is proved. |

The rest of the proof of Lemma 4.1 for a =2 is similar to the proof for
o=2+¢>2 and we omit it.
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Completion of the Proof of Theorem 4.1. Let us substitute the
equation (4.19) into the formula for u, (o ,):

Mg, Ao ,) =Z! exp[ fHo(0 ) + Hi(0 4) + O(ﬁ_N)] (4.30)

where A < V, is a finite connected set,

Ho(o,)= Y o0.0,+ ) &out ) gul(0, &, (431)

{x, 90 xed <x, 92
X, yeAd xed, yeA-
and
HI(JA) = Z nyax (432)
{x 9>
xed, yed

Denote by M«{A)={c{{’} the set of ground state configurations of the
Hamiltonian Hy(o ), i€,

min Hy(o,)=Hya), Vo'f'e M(A)
T4

Then the equation (4.30) implies that the limit,

Koo, (T 4)= lim g o0 ,)
B~

exists and is concentrated on the ground state configurations. In addition,
by (4.30)

Hoo,(04)=2Z"" exp H,(0 ) (4.33)

In the case when A = {x}, (4.31) reduces to

HO(GA) = <§x + Z gyx( co, é)) O

{x, y>

hence if xe V', (&), ie.

i<<fx+ 5 gyx(oo,é)>>0

{(x, 9>

then

hoelox=11)=1,  xeV.({)
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Let now V(&) be a dipole polymer and let
B(&)={xe V(&) dx, V(&) =1}

be the boundary of Vi(&). Then B (&)< V', v V_. Therefore, for all
ground states ¢') on the set A=V, (&)U B, (&) one gets o, = +1 for
xe€ B(&). By (4.33)

—1 ,
Hoo, E(GA):Z eXp{ Z nyo-x}
{x 9>
x e By(¢&), yeA®
This expression does not depend on {o,, xe V,(£)}, hence u, ; is a
uniform measure, i.e.,

1
Poo, (0 4) =

|M (<)l

where |M (&)} is the number of ground states configurations of the
Hamiltonian

Hylod= Y o.0,+ ) o+ ) 0.6
<xvy xe V(&) xe V(&)
x, ye V(&) yeB(d)
where 6,= 1 for ye V', respectively. Let us show that the set M () of
ground states configurations coincides with the set of dipole configurations.
Since the Gibbs measure u,; . has the Markov property, the measure
Moo, ¢ has it as well. This implies that

Hoo, dlTvye) =too, el0y) 1 Hoo dox]ay) (4.34)

{x yrely
where L, is the set of directed edges, which starts at some point yye V(&)

and which has the property that for every x e V,(¢), there exists a unique
path by L, from y, to x. Notice that

luoo,é(o-xa oy) (435)

oo, O, ]0,) =
¢ YT e day)

hence we deduce from (4.34) that u, «(0,) #0 for all dipole configura-
tions and only for dipole configurations. Hence the set M, () of ground
state configurations coincides with the set of dipole ground state configura-
tions and Theorem 4.1 is proven.



Phase Diagram of RFIM on the Bethe Lattice 59

5. RESIDUAL ENTROPY

In this section we will assume that &k =2 and 2 <« < 3. By Theorem 2.4
(a) this ensures that the Gibbs state u, , is unique for all < co and almost
all £. We will derive some general formula for the entropy Sy of 45 .. By
Sz we understand the entropy on the “interior” spins (see, €.g., a discussion
in [Ba]), and as well-known, on the Bethe lattice the entropy depends on
the boundary conditions. We shall show that the entropy S, is a “self-
averaging” quantity, ie., it is independent of & for almost all £ Then we
shall calculate the residual entropy S, =lim,_, ., S, and show that §, > 0.

Consider the stochastic recursive equation

ye S(x)

It is understood as follows. Let {g,, ye S(x)} be independent random
variables with some distribution v(dg), the same for all g,’s. Then we
denote by Qg(v)(dg) the distribution of f5(&, + 3, c 500 &) 1€, Qp(v)(dg)
is the distribution of g, in (5.1). A measure v(dg) is called invariant with
respect to Qp if

v=04v)

Let zx gf » be the Gibbs states with ( + )-boundary conditions, respectively,
and let g* (8, &) ={gX(f, &), xe V} be corresponding effective fields. Let
v,}t(dg) be a probability distribution of g (g, &). Observe that vF(dg) is
independent of x.

From the definition of 4, it follows that

vE = lim Qv¥) (5.2)

where v* =d(g 4 1) dg. This implies that
vy =0pvy) (5.3)
ie, v ﬁi are invariant measures. In addition,
vy =8vg, S . g— —¢g (5.4)
In the case when pg . =u; , for almost all £, v; =v; and it is symmetric.

Proposition 5.1. Assume that for a given f<oo, uy,=p,, for
almost all & Let v=v* =v~. Then for all probability measures vq(dg) on R,

lim Qp(ve)=v (5.5)

n— oo
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Proof. Consider a half-tree V,, with a root at x. From F.X.G.,

<O.x>;4; < <ax>;¢”(a') < <ax>;t:

where ut, u,(6) are finite Gibbs distributions on ¥ with boundary condi-
tions + and &, respectively. Since

<Jx>ﬂ"(6)=tanh(ﬁ(éx+hx)) (56)

this implies that

h <hy(0)<h,

xn ¥

Since g, = f4(¢, + h,) this, in turn, implies that

8 S8l 0) <E3, (5.7)

Consider random boundary conditions = {d,, xe W, ,} where ¢, are
independent random variables with the distribution v,. Then averaging
with respect to ¢ we obtain that

Eom <&anlVo) <83 (5.8)

These inequalities hold for all {. Since u 5, =p 4 , ae. ¢, then taking in (5.8)
n— co, we obtain that

g, =8&v)=g; ael

and hence the distribution of g (vy)=lim,_, . g..(vs) coincides with v.
Since the distribution of g, ,(v,) is nothing else than @"(v,), we obtain that
v=Ilim, _, , Q"(v,). Proposition 5.1 is proved. ||

Now we turn to calculation of the entropy S;. Consider the partition
function of the (& )-state uj (a,),

ZERO-Texn(§ T 00,48 T Lot T A )
o (x, yyel, xeV, xe W,
(5.9)
The free energy (density) is defined as

1
B3(2%)

Observe that |W,|=3(2""!) and |V, | =3(2") - 2.

= Jim =g In Z(A, &) = lim - InZE(B, &) (5.10)
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Theorem 5.1. The free energy exists for all &, it is independent
of &, and it is the same for ( + )-state and ( — )-state. The free energy is
given by the formula

Fp-- 3 [a(c+ ¥ g) T vidg) 1)
{=za ¥ €8(x) yeS(x)

where v7(dg) is the invariant measure of the stochastic equation (5.1) and

dg(x) = (28)~! In(4 cosh B(x + 1) cosh f(x —1)) (5.12)

Proof. For the sake of definiteness, let us consider ( + )-state. From
formula (1.7), we obtain the recursive equation

Z (B, &) =exp <ﬁ ) dﬂ(€x+h§f(é))> Z7 (B ¢) (5.13)

xe W,

This gives that

F*(p,&)= lim —

(& +hi(S)

k 0 xeW,_,

Observe that |dy(¢, +hf (&) < Cgfor all &, A} (&), hence

1 n n
SY e thE)< (z 3(2n—k—1))<c,,.z—f

3(2" k=¢+1 xe W, . 3(2n) k=¢+1
Therefore,

¢

Y X & +hi(0)

k=0 xeW, ;

T = lim - lim =

Since the random variables &, + A} (&), xe W,, are independent, and the
distribution of &, + A} (&) is the same for all xe V, we obtain, by the law
of large numbers, that for a fixed &, for almost all &,

I
lim o Y A AhT@)=C=— ¥ [dy&+h)v*(an)

n—k—
now  3(2 D eew,_, tita (5.14)
where v*(dh) is the distribution of A. This implies that for almost all &,
4

. 1
+(ﬁ, f)—"—‘ lim Z WC:C

£ k=0
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Since A} =%, c5x &, » formula (5.11) follows from (5.14). In addition,
(5.4) implies that F~(f)= F*(f). Theorem 5.1 is proved. |

In the case when the Gibbs state is unique, formula (5.11}) reduces to

Fipy=— % fdﬂ<é+ )3 gy> [T vsldg,) (5.15)

{=+o yeS(x) yeS(x)

where vy=v] =vj .

Differentiability of the Free Energy. The free energy is a function of
f and «. The contraction argument that we used to prove the uniqueness
of the Gibbs state (see Theorems 2.1, 2.2, and 2.4) allows us to prove also
that the free energy is infinitely differentiable in § and « in the indicated
regions of uniqueness in the § — « plane. Indeed, let us consider for the sake
of definiteness the differentiability in 5.

Differentiation of recursive equation (3.2} in § gives a recursive equa-
tion on 9, g,:

aﬁg)c:(aﬁf[)‘) <éx+ Z gy>+f,ﬁ <éx+ z gy> Z a/9gy (5'16)
yeS(x) yeS(x) yeS(x)
where f5(¢) = df,(1)/dt. This equation implies that if we have two solutions
of (3.2), gL and g2, then

058, —0pg%| <C[1+ max |9,g,]] max |g,— g5l
yeS(x) ye S(x)

+kfi(c) max 1058, — 0482 (5.17)
yeS(x
where
c=&+ Y g,
y € S(x)

Assume that we know (as in Theorems 2.1, 2.2) that 0 <kf7(c) <g <1. Let
gl=g..(& and g2=g_(&) be solutions of recursive equation (3.2) in
the volumes V,, and V,, respectively, with, say, (+ )-boundary conditions.
Then

1. there exist some constants Cy, ¢, > 0 such that |g! — g2| < Coe %'

where /=min{m, n} (see the proof of Theorems 2.1 and 2.2 above);
2. (5.16) implies that sup, [0p8,| < co;

3. (5.17) implies that there exist some constants C,, ¢, >0 such that
10581~ 0582 < Cre~!, I=min{m, n}.
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Hence the Cauchy criterion holds for d,g,,(f) which proves that
g.(&)=lim, , . g,.(&) is differentiable in f for all £ Similarly, if we write
£, as &, =oan, where 7, = £ 1 then we can prove that g is differentiable in
a for all »={#n,, xeV}. Higher order differentiation of (3.2) in f and «
allows us to prove in the same way that g, is an infinitely differentiable
function with respect to f§ and « for all #.

If, like in Theorem 2.4a, we have a contraction only for the mathe-
matical expectations of g, with respect to ¢ (or with respect to # where
¢ =an), then the above argument allows us to prove the differentiability in
B and « of the mathematical expectation E,A(g,, xeA), where 4 is an
arbitrary finite subset of V and A(g,, xe A) is an arbitrary smooth func-
tion. Observe that the free energy in (5.11) is a mathematical expectation
of this type, hence it is infinitely differentiable in # and « in the regions
indicated in Theorems 2.1, 2.2, and 2.4.

Evaluation of the Residual Entropy. The entropy S; can be
obtained from (5.11) as

dF
Sﬁ=—d_T(ﬁ)’ ﬁ=T—1

The residual entropy at T=0 is then

S = tim FH=F(0)

A =178 (5.18)

where F(oo)=limg_, ,, F(f). By Lemma4.1, lim,_, ,, g.(f, {)=g.(0, )
takes values in { +1, +¢}. Thus the distribution v, =lim,_, ., v4(dg) has
the form

Vo =[po(g+1)+qgo(g+e)+qo(g—e)+pilg—1)]dg, e=a—2
(5.19)

The weights p, g satisfy p+g=1 and they are determined from the fixed
point stochastic equation

V=0V (5.20)
Assume that 0 <¢ < 1. Then (5.20) reduces to the equations

q=3p% p+q=}



64 Bleher et al.
This gives

p=y2-1, ¢q=i-2 (5.21)

To derive the residual entropy S, from (5.18) we need the linear term in
the asymptotics of v4(dg) as f~' - 0. By Lemma 4.1, YN > 1,

8:(8, &)= g.(0, &)+ (&) 1+ O(B~Y)

where g, (o, &) takes values in the set { £ 1, +¢} and ¢, (&) takes values in
the set

M= {E]—(—Zlﬂl, mn=1, 2,...}

Let x,=0, x{, x,,... be an enumeration of the points in M. Then we obtain
that at f — oo, v4(dg) is approximated by the distribution

yIYTR(dg) :[ Y i Pa, 0 <g—a—%>} dg, x;eM (5.22)

a==*1, ¢ j=0

in the sense that for any smooth test function ¢(g),
[ ot vstdg) — virme(dg)] = O( ) (5.23)

The weights p, ; are found from the fixed point equation v= Q4(v). They
satisfy the equations

Pe =4+ 0(f") (5.24)

s

p1=p+O(7Y),

L0

J J

Formula (5.11) for the free energy can be written as
F(B) = —[ djls) Wlds) (5.25)

where Wy(ds) is the probability distribution of

o.=Ct ) 8y (5.26)

yeS(x)
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From (5.22), (5.23) we obtain that Wy(ds) is approximated by the distri-
bution

= £ 5 woo(s-a )| vew

acAd j=0

where
A={l+g,tg |E=+(2+¢):g,, g.,= 11, +¢}

and w, ; are some weights expressed in terms of p, ;. The approximation
means that for every test function ¢(s),

[ o)E Wds) — wiprme(ds)1 = 0( )
The function

d,,(s)— In[ 2 cosh(28) + 2 cosh(2fs) ]

2

is even and it has the following asymptotics as f — co:

L [r+opN) if 0<s<1
d”(”_{HO(ﬂ—N) it s> 1 (5.28)
and
dﬂ<1+;>_1+—ﬂ1n1+e2f)+0(/3 N) (5.29)

Combining these asymptotic formulas with (5.27), we derive from (5.25)
that

Ap=-2 T T wa2% 3 (a+%)w.,

O<a<l j=0 a>1 j=0

2 Z [l+—ﬁln 1+e2)<)} Wi ,+O0(B~") (5.30)

hence

F(B)=F(oo)— [2 > Z Wa, 7+ Y. In(1 +e*) wl,j] +0(p~™)
ﬂ a>1 j=0 Jj=0 (531)
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From (5.18) we obtain the residual entropy at T=0 as

a>1 j=0 j=

Se=2Y Y xwg,;+ Y In(l+e)w, (5.32)
-0

This is an exact formula. Observe that .S, does not depend on a=2+e¢,
O<e<l.

We do not have an analytic expression for w, ; but some estimates
and numerics shows that the weight w, , is noticeably larger than the other
weights. If we keep in (5.32) only the term w, , then (5.32) reduces to the
Bruinsma approximation (see [ Br]),

SO =w, In2 (5.33)

From (5.27) we find w, = pg, hence
5./2-17
S(og’zpqln2=—‘/-2_—ln2z0.035 In2, 2<a<3 (5.34)

Formula (5.32) remains valid for « =2 and « =3, with some different
weights w, ;. Approximation (5.33) can also be extended to =2 and
a=3. It gives (cf. [ Br]):

S(O)_{élnz if a=3
©|Ltlm2  if a=2

which gives the values of S0 at the spikes a =2, 3 higher than the value
{5.34) on the plateau 2 <a < 3.

6. PROOF OF THEOREMS 2.5 AND 2.6

Proof of Theorem 2.5 from Theorem 2.6. Note that by symmetry

Ee [ ot dl0) = —E; [ o5 o) = M(B, )

hence by Theorem 2.6

b ([ o o) = [ 0.y do) | =2M(5.2) >0
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In addition by F.K.G,,

Jax,u;fé(a) —[oxﬁegé(a) =0

We would like to prove that for almost all & we actually have a strict
inequality, at least for one x. Define the random variable

F&)= ¥ a(x) (f oxﬂ,;<(a>—jaxu;¢<o)>

xeV

where a{x) > 0 are arbitrary numbers such that

Y alx)<oc

xeV

Then F(¢) 20 and E, F(&) > 0. Define
A={&: F(&)>0}

Then Pr A >0, because otherwise E,F(&)=0. Let 7: V- V be a shift of
the Bethe lattice. Notice that

Jorasiinto)= [ oo o)

Hence, if F(&) >0, then F(TE) > 0. Therefore, A = TA4. Since {&,} are inde-
pendent, the shift 7 is ergodic and consequently Pr4=0 or 1. Since
Pr A >0, actually, Pr 4 = 1. Hence, for almost all £

Jaxu,}fg(o) —Jox#,;g(a) >0

for at least one x. This proves that y5 . #u; . for almost all £ and ends the
proof of Theorem 2.5.

Proof of Theorem 2.6. Let g, salisfy the basic equation
gx:fﬂ(éx-i—gy“{_gz) (61)

Assuming that g, and g, are independent and have the same distribution
pldg), the equation (6.1) determines a distribution of g, which we denote
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by Qp(dg). We are interested in the behavior of p, = Q%p, as k— oo,
assuming that

poldg)=0(g—1)dg (6.2)

which corresponds to (4 )-boundary conditions, see (1.2) and (3.3).

The key point is some inductive assumptions on p, which hold for p,
and which are reproducible when we pass from p, to p,,,. To formulate
these inductive assumptions we need some definitions. Let a = HF(T) +¢.
We will assume that ¢>0 is sufficiently small, so that it satisfies some
conditions formulated below. Let

fi(g)=fpl to+2g) (6.3)
and let a >0 be the point where
fSa)=1  f(g<l Vg>a (6.4)
{see Fig. 7). Observe that
f(a)y=a—¢

Indeed, let f(¢)= f4(2¢) and let g,>0 be a solution of the equation
f'(g0)=1. Then

HF(T)=f(g0)—go, a=x+ go, f_(a)=f(go)

From here,

a—f_(a)=oa+g,—flg)=a—H(T)=¢

which was stated.

1/1\ 9

9

Fig. 7. A narrow corridor of order O(e) in the vicinity of g =g is responsible for appearance
of a long intermittent trajectory near g and finally for asymmetric distribution of effective field,
cf. Fig. 3. The same phenomenon one has in the vicinity of g= —a.
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Near a, there is a narrow corridor of width of order O(¢), between the
diagonal y =g and the graph of equation y = f_(g). This implies that we
have a long intermittent trajectory {g,=f_(g,_,)} near a.

Consider some points b, ¢, d such that a<b <c<d and such that
when ¢ - 0,

pco—bch_a=t"C (6.5)

The notation f<=< g as ¢ —» 0 means that lim,_ , f/g =0. Define a sequence
by>b,> .. > by by the recursive equation
by =fZ'b,), Nznzl, by=a (6.6)
We assume that b=b,, ie,
a=by, b=b, {6.7)
and we choose
N=[|ln¢|]
Define then by, , by 2, by the equation
b,=b,_,—¢, nzN+1 (6.8)

Let

potk) = pulde) (69)

bn—l
k) =" puldg),  n=1

n

To avoid technical difficulties we will assume that p({d})=p,({c})=
pi({b,})=0 for all n.
Inductive assumption I,
(i) p*ik)=0.499;
(i) po(k)<0.13;
(ili) puk)<i-27" n=1,2,..
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Main Lemma. There exists ¢(7) >0, which depends continuously
on 0<T<T,, such that for 0<e<e(T), [ =11, k=0,1,2,..

Proof. Assume that (i)—(iii) hold for p, and prove that (i)-(iii) hold
for pyy 1.

Proof of (i). Observe that by (6.5), 0 <d—a << 1. This implies that
Si(g)>d it g>a

(see Fig. 7). In addition,

Therefore
Pr{g,>d} >Pr{é, =a} -Pr{g,>a} -Pr{g, >a}
245 (1-2"%)220.499
if N is sufficiently large. This proves (i).

Proof of (ii). Assume that g,e[b, c]. Then by (6.1) two cases are
possible:

Case 1. ¢,=oa and

L2 e b))

and

Case 2. ¢,= —o and

e %3]

Let us estimate probabilities of these two cases.

Case 1. From Fig. 7 itis clear that if g e [, ¢] then £ T'(g) < a, hence
either g, < a or g, <a. The probability of this possibility is evaluated by

§=2.Pr{é,=a} -Pr{g,<a} <27V x1
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Case 2. In this case,

T (23 U (6.10)

where b_; = f71(b), c_;=f7'(c). From Fig. 7 it is clear that |b—b_,]|,
le—c_;] < Ce, hence

O<ce_y=-b_j<d-c

and ¢_; <d, so that

gy+gz d
‘———2 <

Consider two cases for g, g,.

Case (a). g,, g.<d. By (i),
Pr{g, <d} <0.501
hence the probability of this case is estimated by
6,=Pr{¢,=~a} -Pr{g,<d} - Pr{g,<d} <4 0501><0.126 (6.11)

Case (b): either g, >d or g, >d. Let, say, g, >d. Then by (6.5) and
(6.10),

g.,<a

(use that d —¢=2(b—a) and 0 <c_, — b << d — ¢), hence the probability of
this case is estimated by

3,=2.Pr{é,=—a} -Pr{g,<a} <2V «x1
Thus, polk + 1)<+, +J,<0.13. This proves (ii).

Let us prove (iii) for p,(k+1). First we consider n=1,2, then
2<n<N, and finally n> N.

Proof of (iii) for py(k+1). If g, e[b,, by] and &, =a, then

+8 -
gyz—gef+1([bl’b0])<a
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hence either g, <a or g, <a, and the probability of this case is estimated
by 6 =2"" << 1. Assume that ¢, = —a. Then

+ g,
gngh e/ NI by, bo1) =1bo, b _1], b_1=/Z"(bo)

Consider two cases

Case (a), g,, 8§, =2bo=>b. Theng,, g, <c, because otherwise (g, + g,)/2
>b_; (usethat 0 <b_; — by < Ce << ¢ — b). Hence the probability of this case
is estimated by
8, =Pr{¢,=—a} - (Pr{g,e[b,c]})*<5-0.13?

Case (b), cither g, <b, or g, <by. Let, say, g, <b,. Consider two
subcases,

Subcase (b;), by <g,<c. The probability of this subcase is estimated
by

62:2' Pr{éx: _0(} 'Pr{gy<b0} 'Pr{gze[b’ C]}

where the factor 2 comes from the possibility to exchange g, and g,. Since

Prig, <bo} =3 Prig,e(b,. b, 11} <3
n=1

we obtain that
0,<§-0.13

Subcase (b,), g,>c¢. Then

+4&:

g
gy=2- y2 —8.<2b_,—c

Since ¢ — b >> ¢, this implies that
g, <by, No> 1
and therefore,
Pr{g,<2b _,—c} <27

Thus, the probability of this subcase is estimated by J, =2 << 1.
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Combining all cases and subcases we obtain that
plk+1)<d+6,+0,+d;<L.0.132+1.013+5+5,<0.026

This proves that p,(k + 1) < ¢, hence I, ,(iii} holds for n=1.

Proof of py(k+1)< . As before, the case ¢, =a has a negligibly
small probability § << 1. Let £, = —a. Then

©Z e e N[, 011) = [b1, bo]

Consider two cases.

Case (a), g,. g.=>b,. Observe that either g, <b, or g,<b,, hence
the probability of this case is estimated by

51=2'Pr{éx= '—CL} 'Pl'{gye[bnbo]} 'Pr{gze[blac]}
<% (5+013)< 4504

Case (b), either g, <b, or g, <b,. Let, say, g, <b,. Consider two
subcases,

Subcase (b,), g, <c. The probability of this subcase is estimated by
0;=2Pr{¢, = —a} -Pr{g,<b,} Pr{g.e[b, c]}
Observe that by 7.,
Pr{g,e[b,. b, 11} <3-27"  Prig,<b,} <z 27"
Since
Pr{g,<bi} <+
we get that
0, < - (£+013)+2 "< %.04

Subcase (b,), g.>c. Then g,<by, and the probability of this sub-
case is estimated by J, << 1. Thus,

Pk +1)<6+8,+8,+8,<%

This proves (iii) for n=2.
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Estimate of p,(k+ 1) for 3<r<N. As before, the case ¢, =« has a
negligibly small probability & such that 2¥§ << 1. Let ¢, = —a. Then

t8
gy—zg—e.fﬁl([bn’bn—l]): [bn—la bn—2]

Consider two cases.

Case (a), g,, g, =b,_,. Observe that either g,<b,_, or g,<b, _,.
Let, say g, <b,_,. Then g, e[b,_,,b,_;], because

bn—2_[7n—3 >bn—1 _bn—2

(use that f'_(g)<1 for g>a). Hence the probability of this case is
estimated by

51 =2. Pr{éx: _a} ! Pr{gye [bnnl’ bn—Z]} ' Pr{gze [bn—la bn——3]}

<%‘2—(n—1).é(z-(n—l)_+_2—(n——2))=1%.2—2n

Case (b), either g, <b,_, or g, <b,_;. The probability of this sub-
case is estimated by

3,=Pr{g,<b,_\} -Pr{g.el[b,_,,cl} <§ 27"V .(§+0.13)
—1.2-7.051

Thus,
Pk + VK6 +6,+8,<d+4-27"(3.27"+051)<§-27"

This finishes proof of (iii) for n < N.

Proof of (iii) for n> N. Let us consider £, = —a. Then
+8. ,_
828 f 2 b b))

Since f'_(g) < 2 tanh § and f(a) =a —¢, we obtain that

n
= -C
" 2tanh g ¢

./‘:I(bn—l)>bm’

where C, does not depend on e. This implies that

f:l([bn’ bn—l]) = [bj’ bj—/’]
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where

n
iz2————C
/2 tanh g~ O

and / is a number that does not depend on ¢. Hence

8 +8:
o elbu b ]

Let us estimate

+8&.
0="Pr {gyzg elb;, bj~f]}

If (g,+g.)/2e([b;,b;_,] then either g,<b,_, or g,<b,_,. Let, say,
g,<b;_,. Assume that g, e[b,, ., b,]. Then g,e[b,,,b,], with

2i—-m—Ci<p<2j—m+C,

where C| does not depend on ¢. Therefore,
%

Pr {%e [b), bj_,]} <C, Y 27m2-@i=mgoC, Y

J
me=j

< C3n2 —~2n/(2 tanh ) _ C3I’12 —n/tanh g
Since tanh f < 1, this implies that
&y t8: L
Pr {y—z——e Lb;, b, ] } <E 2
and p,(k+1)<%.27" This finishes the proof of the inductive assumption

Ii 4. Main Lemma is proven. |

Completion of the Proof of Theorem 2.6. The one-point distribu-
tion of the ( + )-state is given by

u;té(ax):z“expax(«:ﬁ 5 g;m)

yidix, y)=1

The effective field g (<) has the distribution

vt = lim Q%v,, voldg)=d(g—1) dg

k—
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By Main Lemma, v* satisfies the inductive assumption . Observe that

ECoo=2" Y []  [via)

Se=xa y:dx y)=1

x Y o,expo, {éx+ > g;(f)}

o, =%l yid(x, y)=1

By I,

fim jm yH(dg)=1, e=a—HYT)

e—>0t Yo
which implies that for sufficiently small ¢> 0,
Es <oy >0

This finishes the proof of Theorem 2.6. ||

On the Discontinuous Change of the Support of the Invariant
Measure v (dg) at a=H¥(T). Let T<T,. Then for 0 <a<H(T) the
support of the limiting measure

Vg (dg) = lim Qtvoldg),  voldg)=0d(g—1)dg

lies in the interval
supp vy < [M*(f, —a), M*(f, )] (6.12)

where t =M *(f, +a) >0 is the largest among three solutions of the fixed
point equation

foltoa+20)=t

Indeed, by the F.K.G. inequality, for all realizations & of the random exter-
nal field,

M* (B, —a)=glf({~a}; BY<g (& B <gf({a}; f)=M™*(f, a)
hence the support of the distribution of g f(¢; B), which is vj (dg), lies in

the interval [ M (B, —a), M *(f, «)] on the positive half-axis, which was
stated.
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For a> HY(T) the fixed point equation f;( —a+2¢) =1 has a unique
solution M ~(f, —a) <0. We claim that for every y> M ~(f, —a),

fy v} (dg) >0 (6.13)

Indeed, let N = N(y) be such a number that for all 7,< 1,

fY(t) <y

where f_ (1) = fg( —a+2f) and f ¥ means the Nth iteration of the map
f_:1t— f_(1). There is a positive probability p(N) >0 that £, = —a for all
y in the ball of radius N + | centered at x,. In this case the recursive equa-
tion g, = fy(¢, + g, + g.) implies that

g.=fo—atg,+g)<f (1), t=max{g,, g}

for all x in the ball of radius N, hence
g S <y

with probability at least p(N )} >0, which was stated.

The relations (6.12) and (6.13) show that at « = HF(T') the support of
the invariant measure v (dg) changes discontinuously. Since the free
energy F*(f, a) is expressed as an average with respect to a finite product
of the measures v;(dg) (see formula (5.11) above), we conjecture that
F(f, «) is nonanalytic in « at a = H¥(T) but we cannot prove it rigorously.
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